Java tutorial
/* Copyright 2016 Michael Sladoje and Mike Schlchli. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ package ch.zhaw.facerecognitionlibrary.Recognition; import android.content.Context; import android.content.SharedPreferences; import android.content.res.AssetManager; import android.graphics.Bitmap; import android.preference.PreferenceManager; import org.opencv.android.Utils; import org.opencv.core.Mat; import org.opencv.core.Size; import org.opencv.imgproc.Imgproc; import org.opencv.utils.Converters; import java.util.ArrayList; import java.util.List; import ch.zhaw.facerecognitionlibrary.Helpers.FileHelper; /*************************************************************************************** * Title: TensorFlowAndroidDemo * Author: miyosuda * Date: 23.04.2016 * Code version: - * Availability: https://github.com * ***************************************************************************************/ public class TensorFlow implements Recognition { private static final String STRING_SPLIT_CHARACTER = " "; private String inputLayer; private String outputLayer; private int inputSize; private int outputSize; Recognition rec; public TensorFlow(Context context, int method) { String dataPath = FileHelper.TENSORFLOW_PATH; SharedPreferences sharedPref = PreferenceManager .getDefaultSharedPreferences((context.getApplicationContext())); int numClasses = Integer.valueOf(sharedPref.getString("key_numClasses", "1001")); inputSize = Integer.valueOf(sharedPref.getString("key_inputSize", "224")); int imageMean = Integer.valueOf(sharedPref.getString("key_imageMean", "128")); outputSize = Integer.valueOf(sharedPref.getString("key_outputSize", "1024")); inputLayer = sharedPref.getString("key_inputLayer", "input"); outputLayer = sharedPref.getString("key_outputLayer", "avgpool0"); String modelFile = sharedPref.getString("key_modelFileTensorFlow", "tensorflow_inception_graph.pb"); Boolean classificationMethod = sharedPref.getBoolean("key_classificationMethodTFCaffe", true); final AssetManager assetManager = context.getAssets(); initializeTensorflow(assetManager, dataPath + modelFile, numClasses, inputSize, imageMean); if (classificationMethod) { rec = new SupportVectorMachine(context, method); } else { rec = new KNearestNeighbor(context, method); } } // link jni library static { System.loadLibrary("tensorflow"); } // connect the native functions private native int initializeTensorflow(AssetManager assetManager, String model, int numClasses, int inputSize, int imageMean); private native String classifyImageBmp(String inputLayer, String outputLayer, int outputSize, Bitmap bitmap); private native String classifyImageRgb(String inputLayer, String outputLayer, int outputSize, int[] output, int width, int height); @Override public boolean train() { return rec.train(); } @Override public String recognize(Mat img, String expectedLabel) { return rec.recognize(getFeatureVector(img), expectedLabel); } @Override public void saveToFile() { } @Override public void loadFromFile() { } @Override public void saveTestData() { rec.saveTestData(); } @Override public void addImage(Mat img, String label, boolean featuresAlreadyExtracted) { if (featuresAlreadyExtracted) { rec.addImage(img, label, true); } else { rec.addImage(getFeatureVector(img), label, true); } } public Mat getFeatureVector(Mat img) { Imgproc.resize(img, img, new Size(inputSize, inputSize)); Bitmap bmp = Bitmap.createBitmap(inputSize, inputSize, Bitmap.Config.ARGB_8888); Utils.matToBitmap(img, bmp); String[] sVector = classifyImageBmp(inputLayer, outputLayer, outputSize, bmp).split(STRING_SPLIT_CHARACTER); System.out.println(sVector.length); List<Float> fVector = new ArrayList<>(); for (String s : sVector) { fVector.add(Float.parseFloat(s)); } return Converters.vector_float_to_Mat(fVector); } }