Java tutorial
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.andado.spark.examples.ml; import org.apache.spark.ml.feature.ElementwiseProduct; import org.apache.spark.ml.linalg.Vector; import org.apache.spark.ml.linalg.VectorUDT; import org.apache.spark.ml.linalg.Vectors; import org.apache.spark.sql.Dataset; import org.apache.spark.sql.Row; import org.apache.spark.sql.RowFactory; import org.apache.spark.sql.SparkSession; import org.apache.spark.sql.types.DataTypes; import org.apache.spark.sql.types.StructField; import org.apache.spark.sql.types.StructType; import java.util.ArrayList; import java.util.Arrays; import java.util.List; // $example on$ // $example off$ public class JavaElementwiseProductExample { public static void main(String[] args) { SparkSession spark = SparkSession.builder().appName("JavaElementwiseProductExample").getOrCreate(); // $example on$ // Create some vector data; also works for sparse vectors List<Row> data = Arrays.asList(RowFactory.create("a", Vectors.dense(1.0, 2.0, 3.0)), RowFactory.create("b", Vectors.dense(4.0, 5.0, 6.0))); List<StructField> fields = new ArrayList<>(2); fields.add(DataTypes.createStructField("id", DataTypes.StringType, false)); fields.add(DataTypes.createStructField("vector", new VectorUDT(), false)); StructType schema = DataTypes.createStructType(fields); Dataset<Row> dataFrame = spark.createDataFrame(data, schema); Vector transformingVector = Vectors.dense(0.0, 1.0, 2.0); ElementwiseProduct transformer = new ElementwiseProduct().setScalingVec(transformingVector) .setInputCol("vector").setOutputCol("transformedVector"); // Batch transform the vectors to create new column: transformer.transform(dataFrame).show(); // $example off$ spark.stop(); } }