Java tutorial
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.andado.spark.examples.ml; import org.apache.spark.ml.feature.PolynomialExpansion; import org.apache.spark.ml.linalg.VectorUDT; import org.apache.spark.ml.linalg.Vectors; import org.apache.spark.sql.Dataset; import org.apache.spark.sql.Row; import org.apache.spark.sql.RowFactory; import org.apache.spark.sql.SparkSession; import org.apache.spark.sql.types.Metadata; import org.apache.spark.sql.types.StructField; import org.apache.spark.sql.types.StructType; import java.util.Arrays; import java.util.List; // $example on$ // $example off$ public class JavaPolynomialExpansionExample { public static void main(String[] args) { SparkSession spark = SparkSession.builder().appName("JavaPolynomialExpansionExample").getOrCreate(); // $example on$ PolynomialExpansion polyExpansion = new PolynomialExpansion().setInputCol("features") .setOutputCol("polyFeatures").setDegree(3); List<Row> data = Arrays.asList(RowFactory.create(Vectors.dense(2.0, 1.0)), RowFactory.create(Vectors.dense(0.0, 0.0)), RowFactory.create(Vectors.dense(3.0, -1.0))); StructType schema = new StructType( new StructField[] { new StructField("features", new VectorUDT(), false, Metadata.empty()), }); Dataset<Row> df = spark.createDataFrame(data, schema); Dataset<Row> polyDF = polyExpansion.transform(df); polyDF.show(false); // $example off$ spark.stop(); } }