com.askjeffreyliu.camera2barcode.camera.CameraSource.java Source code

Java tutorial

Introduction

Here is the source code for com.askjeffreyliu.camera2barcode.camera.CameraSource.java

Source

/*
 * Copyright (C) The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.askjeffreyliu.camera2barcode.camera;

import android.Manifest;
import android.annotation.SuppressLint;
import android.content.Context;
import android.content.pm.PackageManager;
import android.content.res.Configuration;
import android.graphics.ImageFormat;
import android.graphics.Matrix;
import android.graphics.Point;
import android.graphics.RectF;
import android.graphics.SurfaceTexture;
import android.hardware.camera2.CameraAccessException;
import android.hardware.camera2.CameraCaptureSession;
import android.hardware.camera2.CameraCharacteristics;
import android.hardware.camera2.CameraDevice;
import android.hardware.camera2.CameraManager;
import android.hardware.camera2.CaptureRequest;
import android.hardware.camera2.CaptureResult;
import android.hardware.camera2.TotalCaptureResult;
import android.hardware.camera2.params.StreamConfigurationMap;
import android.media.Image;
import android.media.ImageReader;
import android.os.Handler;
import android.os.HandlerThread;
import android.support.annotation.NonNull;
import android.support.annotation.RequiresPermission;
import android.support.v4.content.ContextCompat;
import android.util.Log;
import android.util.Range;
import android.util.SparseIntArray;
import android.view.Surface;

import com.askjeffreyliu.camera2barcode.MultiResultEvent;
import com.askjeffreyliu.camera2barcode.camera2.AutoFitTextureView;
import com.askjeffreyliu.camera2barcode.utils.Utils;
import com.google.android.gms.common.images.Size;
import com.google.zxing.BarcodeFormat;
import com.google.zxing.BinaryBitmap;
import com.google.zxing.DecodeHintType;
import com.google.zxing.NotFoundException;
import com.google.zxing.PlanarYUVLuminanceSource;
import com.google.zxing.Result;
import com.google.zxing.common.HybridBinarizer;
import com.google.zxing.multi.GenericMultipleBarcodeReader;
import com.google.zxing.multi.qrcode.QRCodeMultiReader;
import com.google.zxing.pdf417.PDF417Reader;

import org.greenrobot.eventbus.EventBus;

import java.io.IOException;
import java.lang.Thread.State;
import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.Hashtable;
import java.util.List;
import java.util.Map;
import java.util.TreeMap;
import java.util.concurrent.Semaphore;
import java.util.concurrent.TimeUnit;

// Note: This requires Google Play Services 8.1 or higher, due to using indirect byte buffers for
// storing images.

/**
 * Manages the camera in conjunction with an underlying
 * {@link com.google.android.gms.vision.Detector}.  This receives preview frames from the camera at
 * a specified rate, sending those frames to the detector as fast as it is able to process those
 * frames.
 * <p/>
 * The following Android permission is required to use the camera:
 * <ul>
 * <li>android.permissions.CAMERA</li>
 * </ul>
 */

public class CameraSource {
    public static final int CAMERA_FACING_BACK = 0;
    public static final int CAMERA_FACING_FRONT = 1;
    private int mFacing = CAMERA_FACING_BACK;

    private int mFlashMode = CaptureRequest.CONTROL_AE_MODE_ON_AUTO_FLASH;
    private int mFocusMode = CaptureRequest.CONTROL_AF_MODE_CONTINUOUS_PICTURE;

    private static final String TAG = "OpenCameraSource";
    private static final double maxRatioTolerance = 0.1;
    private Context mContext;
    private QRCodeMultiReader mQrReader;
    private GenericMultipleBarcodeReader matrixReader;
    private PDF417Reader pdf417Reader;
    private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
    private boolean cameraStarted = false;
    private int imageWidth, imageHeight;
    private Hashtable<DecodeHintType, Object> hints = new Hashtable<>();

    /**
     * A reference to the opened {@link CameraDevice}.
     */
    private CameraDevice mCameraDevice;

    /**
     * An additional thread for running tasks that shouldn't block the UI.
     */
    private HandlerThread mBackgroundThread;

    /**
     * A {@link Handler} for running tasks in the background.
     */
    private Handler mBackgroundHandler;

    private int mDisplayOrientation;

    /**
     * {@link CaptureRequest.Builder} for the camera preview
     */
    private CaptureRequest.Builder mPreviewRequestBuilder;

    /**
     * {@link CaptureRequest} generated by {@link #mPreviewRequestBuilder}
     */
    private CaptureRequest mPreviewRequest;

    /**
     * A {@link CameraCaptureSession } for camera preview.
     */
    private CameraCaptureSession mCaptureSession;

    /**
     * The {@link Size} of camera preview.
     */
    private Size mPreviewSize;

    /**
     * ID of the current {@link CameraDevice}.
     */
    private String mCameraId;

    /**
     * Max preview width that is guaranteed by Camera2 API
     */
    private static final int MAX_PREVIEW_WIDTH = 1920;

    /**
     * Max preview height that is guaranteed by Camera2 API
     */
    private static final int MAX_PREVIEW_HEIGHT = 1080;

    /**
     * An {@link AutoFitTextureView} for camera preview.
     */
    private AutoFitTextureView mTextureView;

    private CameraManager manager = null;

    static {
        ORIENTATIONS.append(Surface.ROTATION_0, 90);
        ORIENTATIONS.append(Surface.ROTATION_90, 0);
        ORIENTATIONS.append(Surface.ROTATION_180, 270);
        ORIENTATIONS.append(Surface.ROTATION_270, 180);
    }

    /**
     * A {@link Semaphore} to prevent the app from exiting before closing the camera.
     */
    private Semaphore mCameraOpenCloseLock = new Semaphore(1);

    /**
     * Whether the current camera device supports Flash or not.
     */
    private boolean mFlashSupported;

    /**
     * Dedicated thread and associated runnable for calling into the detector with frames, as the
     * frames become available from the camera.
     */
    private Thread mProcessingThread;
    private FrameProcessingRunnable mFrameProcessor;

    /**
     * An {@link ImageReader} that handles live preview.
     */
    private ImageReader mImageReaderPreview;

    /**
     * A {@link CameraCaptureSession.CaptureCallback} that handles events related to JPEG capture.
     */
    private CameraCaptureSession.CaptureCallback mCaptureCallback = new CameraCaptureSession.CaptureCallback() {
        @Override
        public void onCaptureProgressed(@NonNull CameraCaptureSession session, @NonNull CaptureRequest request,
                @NonNull CaptureResult partialResult) {
        }

        @Override
        public void onCaptureCompleted(@NonNull CameraCaptureSession session, @NonNull CaptureRequest request,
                @NonNull TotalCaptureResult result) {
        }
    };

    /**
     * This is a callback object for the {@link ImageReader}. "onImageAvailable" will be called when a
     * preview frame is ready to be processed.
     */
    private final ImageReader.OnImageAvailableListener mOnPreviewAvailableListener = new ImageReader.OnImageAvailableListener() {
        @Override
        public void onImageAvailable(ImageReader reader) {
            Image mImage = reader.acquireNextImage();
            if (mImage == null) {
                return;
            }
            if (imageWidth == 0 || imageHeight == 0) {
                imageWidth = mImage.getHeight(); // swapping
                imageHeight = mImage.getWidth();// swapping
            }
            mFrameProcessor.setNextFrame(mImage);
            mImage.close();
        }
    };

    /**
     * {@link CameraDevice.StateCallback} is called when {@link CameraDevice} changes its state.
     */
    private CameraDevice.StateCallback mStateCallback = new CameraDevice.StateCallback() {
        @Override
        public void onOpened(CameraDevice cameraDevice) {
            mCameraOpenCloseLock.release();
            mCameraDevice = cameraDevice;
            createCameraPreviewSession();
        }

        @Override
        public void onDisconnected(CameraDevice cameraDevice) {
            mCameraOpenCloseLock.release();
            cameraDevice.close();
            mCameraDevice = null;
        }

        @Override
        public void onError(CameraDevice cameraDevice, int error) {
            mCameraOpenCloseLock.release();
            cameraDevice.close();
            mCameraDevice = null;
        }
    };

    //==============================================================================================
    // Builder
    //==============================================================================================

    /**
     * Builder for configuring and creating an associated camera source.
     */
    public static class Builder {

        private CameraSource mCameraSource = new CameraSource();

        /**
         * Creates a camera source builder with the supplied context and detector.  Camera preview
         * images will be streamed to the associated detector upon starting the camera source.
         */
        public Builder(Context context, QRCodeMultiReader mQrReader, GenericMultipleBarcodeReader dataMatrixReader,
                PDF417Reader pdf417Reader) {
            if (context == null) {
                throw new IllegalArgumentException("No context supplied.");
            }
            mCameraSource.mQrReader = mQrReader;
            mCameraSource.matrixReader = dataMatrixReader;
            mCameraSource.pdf417Reader = pdf417Reader;
            mCameraSource.mContext = context;

            mCameraSource.hints.put(DecodeHintType.TRY_HARDER, Boolean.TRUE);
            mCameraSource.hints.put(DecodeHintType.POSSIBLE_FORMATS, Arrays.asList(BarcodeFormat.DATA_MATRIX));
        }

        public Builder setFocusMode(int mode) {
            mCameraSource.mFocusMode = mode;
            return this;
        }

        public Builder setFlashMode(int mode) {
            mCameraSource.mFlashMode = mode;
            return this;
        }

        /**
         * Sets the camera to use (either {@link #CAMERA_FACING_BACK} or
         * {@link #CAMERA_FACING_FRONT}). Default: back facing.
         */
        public Builder setFacing(int facing) {
            if ((facing != CAMERA_FACING_BACK) && (facing != CAMERA_FACING_FRONT)) {
                throw new IllegalArgumentException("Invalid camera: " + facing);
            }
            mCameraSource.mFacing = facing;
            return this;
        }

        /**
         * Creates an instance of the camera source.
         */
        public CameraSource build() {
            mCameraSource.mFrameProcessor = mCameraSource.new FrameProcessingRunnable();
            return mCameraSource;
        }
    }

    //==============================================================================================
    // Bridge Functionality for the Camera2 API
    //==============================================================================================

    // AUTO FOCUS PART HAS BEEN OMITTED FOR SIMPLICITY.

    //==============================================================================================
    // Public
    //==============================================================================================

    /**
     * Starts a background thread and its {@link Handler}.
     */
    private void startBackgroundThread() {
        mBackgroundThread = new HandlerThread("CameraBackground");
        mBackgroundThread.start();
        mBackgroundHandler = new Handler(mBackgroundThread.getLooper());
    }

    /**
     * Stops the background thread and its {@link Handler}.
     */
    private void stopBackgroundThread() {
        try {
            if (mBackgroundThread != null) {
                mBackgroundThread.quitSafely();
                mBackgroundThread.join();
                mBackgroundThread = null;
                mBackgroundHandler = null;
            }
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

    /**
     * Stops the camera and releases the resources of the camera and underlying detector.
     */
    public void release() {
        mFrameProcessor.release();
        stop();
    }

    public void setReaderType(int readerType) {
        mFrameProcessor.setReadType(readerType);
    }

    /**
     * Closes the camera and stops sending frames to the underlying frame detector.
     * <p/>
     * This camera source may be restarted again by calling {@link #start(AutoFitTextureView, int)}.
     * <p/>
     * Call {@link #release()} instead to completely shut down this camera source and release the
     * resources of the underlying detector.
     */
    public void stop() {
        try {
            mFrameProcessor.setActive(false);
            if (mProcessingThread != null) {
                try {
                    // Wait for the thread to complete to ensure that we can't have multiple threads
                    // executing at the same time (i.e., which would happen if we called start too
                    // quickly after stop).
                    mProcessingThread.join();
                } catch (InterruptedException e) {
                    Log.d(TAG, "Frame processing thread interrupted on release.");
                }
                mProcessingThread = null;
            }
            mCameraOpenCloseLock.acquire();
            if (null != mCaptureSession) {
                mCaptureSession.close();
                mCaptureSession = null;
            }
            if (null != mCameraDevice) {
                mCameraDevice.close();
                mCameraDevice = null;
            }
            if (null != mImageReaderPreview) {
                mImageReaderPreview.close();
                mImageReaderPreview = null;
            }
        } catch (InterruptedException e) {
            throw new RuntimeException("Interrupted while trying to lock camera closing.", e);
        } finally {
            mCameraOpenCloseLock.release();
            stopBackgroundThread();
            Log.d("ASD", "FINISHED CLOSING CAMERA2");
        }
    }

    public boolean isCamera2Native() {
        try {
            if (ContextCompat.checkSelfPermission(mContext,
                    Manifest.permission.CAMERA) != PackageManager.PERMISSION_GRANTED) {
                return false;
            }
            manager = (CameraManager) mContext.getSystemService(Context.CAMERA_SERVICE);
            mCameraId = manager.getCameraIdList()[mFacing];
            CameraCharacteristics characteristics = manager.getCameraCharacteristics(mCameraId);
            //CHECK CAMERA HARDWARE LEVEL.
            int deviceLevel = characteristics.get(CameraCharacteristics.INFO_SUPPORTED_HARDWARE_LEVEL);
            return (deviceLevel != CameraCharacteristics.INFO_SUPPORTED_HARDWARE_LEVEL_LEGACY);
        } catch (CameraAccessException ex) {
            return false;
        }
    }

    /**
     * Opens the camera and starts sending preview frames to the underlying detector.  The supplied
     * texture view is used for the preview so frames can be displayed to the user.
     *
     * @param textureView        the surface holder to use for the preview frames
     * @param displayOrientation the display orientation for a non stretched preview
     * @throws IOException if the supplied texture view could not be used as the preview display
     */
    @RequiresPermission(Manifest.permission.CAMERA)
    public CameraSource start(AutoFitTextureView textureView, int displayOrientation) throws IOException {
        mDisplayOrientation = displayOrientation;
        if (ContextCompat.checkSelfPermission(mContext,
                Manifest.permission.CAMERA) == PackageManager.PERMISSION_GRANTED) {
            if (cameraStarted) {
                return this;
            }
            cameraStarted = true;
            startBackgroundThread();

            mProcessingThread = new Thread(mFrameProcessor);
            mFrameProcessor.setActive(true);
            mProcessingThread.start();

            mTextureView = textureView;
            if (mTextureView.isAvailable()) {
                openCamera(mTextureView.getWidth(), mTextureView.getHeight());
            }
        }
        return this;
    }

    /**
     * Returns the preview size that is currently in use by the underlying camera.
     */
    public Size getPreviewSize() {
        return mPreviewSize;
    }

    /**
     * Returns the selected camera; one of {@link #CAMERA_FACING_BACK} or
     * {@link #CAMERA_FACING_FRONT}.
     */
    public int getCameraFacing() {
        return mFacing;
    }

    private Size getBestAspectPictureSize(android.util.Size[] supportedPictureSizes) {
        float targetRatio = Utils.getScreenRatio(mContext);
        Size bestSize = null;
        TreeMap<Double, List> diffs = new TreeMap<>();

        for (android.util.Size size : supportedPictureSizes) {
            float ratio = (float) size.getWidth() / size.getHeight();
            double diff = Math.abs(ratio - targetRatio);
            if (diff < maxRatioTolerance) {
                if (diffs.keySet().contains(diff)) {
                    //add the value to the list
                    diffs.get(diff).add(size);
                } else {
                    List newList = new ArrayList<>();
                    newList.add(size);
                    diffs.put(diff, newList);
                }
            }
        }

        //diffs now contains all of the usable sizes
        //now let's see which one has the least amount of
        for (Map.Entry entry : diffs.entrySet()) {
            List<android.util.Size> entries = (List) entry.getValue();
            for (android.util.Size s : entries) {
                if (bestSize == null) {
                    bestSize = new Size(s.getWidth(), s.getHeight());
                } else if (bestSize.getWidth() < s.getWidth() || bestSize.getHeight() < s.getHeight()) {
                    bestSize = new Size(s.getWidth(), s.getHeight());
                }
            }
        }
        return bestSize;
    }

    /**
     * Given {@code choices} of {@code Size}s supported by a camera, choose the smallest one that
     * is at least as large as the respective texture view size, and that is at most as large as the
     * respective max size, and whose aspect ratio matches with the specified value. If such size
     * doesn't exist, choose the largest one that is at most as large as the respective max size,
     * and whose aspect ratio matches with the specified value.
     *
     * @param choices           The list of sizes that the camera supports for the intended output
     *                          class
     * @param textureViewWidth  The width of the texture view relative to sensor coordinate
     * @param textureViewHeight The height of the texture view relative to sensor coordinate
     * @param maxWidth          The maximum width that can be chosen
     * @param maxHeight         The maximum height that can be chosen
     * @param aspectRatio       The aspect ratio
     * @return The optimal {@code Size}, or an arbitrary one if none were big enough
     */
    private static Size chooseOptimalSize(Size[] choices, int textureViewWidth, int textureViewHeight, int maxWidth,
            int maxHeight, Size aspectRatio) {

        // Collect the supported resolutions that are at least as big as the preview Surface
        List<Size> bigEnough = new ArrayList<>();
        // Collect the supported resolutions that are smaller than the preview Surface
        List<Size> notBigEnough = new ArrayList<>();
        int w = aspectRatio.getWidth();
        int h = aspectRatio.getHeight();
        for (Size option : choices) {
            if (option.getWidth() <= maxWidth && option.getHeight() <= maxHeight
                    && option.getHeight() == option.getWidth() * h / w) {
                if (option.getWidth() >= textureViewWidth && option.getHeight() >= textureViewHeight) {
                    bigEnough.add(option);
                } else {
                    notBigEnough.add(option);
                }
            }
        }

        // Pick the smallest of those big enough. If there is no one big enough, pick the
        // largest of those not big enough.
        if (bigEnough.size() > 0) {
            return Collections.min(bigEnough, new CompareSizesByArea());
        } else if (notBigEnough.size() > 0) {
            return Collections.max(notBigEnough, new CompareSizesByArea());
        } else {
            Log.e(TAG, "Couldn't find any suitable preview size");
            return choices[0];
        }
    }

    /**
     * Compares two {@code Size}s based on their areas.
     */
    private static class CompareSizesByArea implements Comparator<Size> {

        @Override
        public int compare(Size lhs, Size rhs) {
            // We cast here to ensure the multiplications won't overflow
            return Long.signum((long) lhs.getWidth() * lhs.getHeight() - (long) rhs.getWidth() * rhs.getHeight());
        }

    }

    private void openCamera(int width, int height) {
        setUpCameraOutputs(width, height);
    }

    /**
     * Configures the necessary {@link android.graphics.Matrix} transformation to `mTextureView`.
     * This method should be called after the camera preview size is determined in
     * setUpCameraOutputs and also the size of `mTextureView` is fixed.
     *
     * @param viewWidth  The width of `mTextureView`
     * @param viewHeight The height of `mTextureView`
     */
    private void configureTransform(int viewWidth, int viewHeight) {
        if (null == mTextureView || null == mPreviewSize) {
            return;
        }
        int rotation = mDisplayOrientation;
        Matrix matrix = new Matrix();
        RectF viewRect = new RectF(0, 0, viewWidth, viewHeight);
        RectF bufferRect = new RectF(0, 0, mPreviewSize.getHeight(), mPreviewSize.getWidth());
        float centerX = viewRect.centerX();
        float centerY = viewRect.centerY();
        if (Surface.ROTATION_90 == rotation || Surface.ROTATION_270 == rotation) {
            bufferRect.offset(centerX - bufferRect.centerX(), centerY - bufferRect.centerY());
            matrix.setRectToRect(viewRect, bufferRect, Matrix.ScaleToFit.FILL);
            float scale = Math.max((float) viewHeight / mPreviewSize.getHeight(),
                    (float) viewWidth / mPreviewSize.getWidth());
            matrix.postScale(scale, scale, centerX, centerY);
            matrix.postRotate(90 * (rotation - 2), centerX, centerY);
        } else if (Surface.ROTATION_180 == rotation) {
            matrix.postRotate(180, centerX, centerY);
        }
        mTextureView.setTransform(matrix);
    }

    /**
     * Sets up member variables related to camera.
     *
     * @param width  The width of available size for camera preview
     * @param height The height of available size for camera preview
     */
    private void setUpCameraOutputs(int width, int height) {
        try {
            if (ContextCompat.checkSelfPermission(mContext,
                    Manifest.permission.CAMERA) != PackageManager.PERMISSION_GRANTED) {
                return;
            }
            if (!mCameraOpenCloseLock.tryAcquire(2500, TimeUnit.MILLISECONDS)) {
                throw new RuntimeException("Time out waiting to lock camera opening.");
            }
            if (manager == null)
                manager = (CameraManager) mContext.getSystemService(Context.CAMERA_SERVICE);
            mCameraId = manager.getCameraIdList()[mFacing];
            CameraCharacteristics characteristics = manager.getCameraCharacteristics(mCameraId);
            StreamConfigurationMap map = characteristics.get(CameraCharacteristics.SCALER_STREAM_CONFIGURATION_MAP);
            if (map == null) {
                return;
            }

            // For still image captures, we use the largest available size.
            Size largest = getBestAspectPictureSize(map.getOutputSizes(ImageFormat.JPEG));

            // Find out if we need to swap dimension to get the preview size relative to sensor
            // coordinate.
            int displayRotation = mDisplayOrientation;
            //noinspection ConstantConditions
            int mSensorOrientation = characteristics.get(CameraCharacteristics.SENSOR_ORIENTATION);
            boolean swappedDimensions = false;
            switch (displayRotation) {
            case Surface.ROTATION_0:
            case Surface.ROTATION_180:
                if (mSensorOrientation == 90 || mSensorOrientation == 270) {
                    swappedDimensions = true;
                }
                break;
            case Surface.ROTATION_90:
            case Surface.ROTATION_270:
                if (mSensorOrientation == 0 || mSensorOrientation == 180) {
                    swappedDimensions = true;
                }
                break;
            default:
                Log.e(TAG, "Display rotation is invalid: " + displayRotation);
            }

            Point displaySize = new Point(Utils.getScreenWidth(mContext), Utils.getScreenHeight(mContext));
            int rotatedPreviewWidth = width;
            int rotatedPreviewHeight = height;
            int maxPreviewWidth = displaySize.x;
            int maxPreviewHeight = displaySize.y;

            if (swappedDimensions) {
                rotatedPreviewWidth = height;
                rotatedPreviewHeight = width;
                maxPreviewWidth = displaySize.y;
                maxPreviewHeight = displaySize.x;
            }

            if (maxPreviewWidth > MAX_PREVIEW_WIDTH) {
                maxPreviewWidth = MAX_PREVIEW_WIDTH;
            }

            if (maxPreviewHeight > MAX_PREVIEW_HEIGHT) {
                maxPreviewHeight = MAX_PREVIEW_HEIGHT;
            }

            // Danger, W.R.! Attempting to use too large a preview size could  exceed the camera
            // bus' bandwidth limitation, resulting in gorgeous previews but the storage of
            // garbage capture data.
            Size[] outputSizes = Utils.sizeToSize(map.getOutputSizes(SurfaceTexture.class));
            mPreviewSize = chooseOptimalSize(outputSizes, rotatedPreviewWidth, rotatedPreviewHeight,
                    maxPreviewWidth, maxPreviewHeight, largest);

            // We fit the aspect ratio of TextureView to the size of preview we picked.
            int orientation = mDisplayOrientation;
            if (orientation == Configuration.ORIENTATION_LANDSCAPE) {
                mTextureView.setAspectRatio(mPreviewSize.getWidth(), mPreviewSize.getHeight());
            } else {
                mTextureView.setAspectRatio(mPreviewSize.getHeight(), mPreviewSize.getWidth());
            }

            // Check if the flash is supported.
            Boolean available = characteristics.get(CameraCharacteristics.FLASH_INFO_AVAILABLE);
            mFlashSupported = available == null ? false : available;

            // control.aeTargetFpsRange
            Range<Integer>[] availableFpsRange = characteristics
                    .get(CameraCharacteristics.CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES);

            configureTransform(width, height);

            manager.openCamera(mCameraId, mStateCallback, mBackgroundHandler);
        } catch (CameraAccessException e) {
            e.printStackTrace();
        } catch (InterruptedException e) {
            throw new RuntimeException("Interrupted while trying to lock camera opening.", e);
        } catch (NullPointerException e) {
            // Currently an NPE is thrown when the Camera2API is used but not supported on the
            // device this code runs.
            Log.d(TAG, "Camera Error: " + e.getMessage());
        }
    }

    /**
     * Creates a new {@link CameraCaptureSession} for camera preview.
     */
    private void createCameraPreviewSession() {
        try {
            SurfaceTexture texture = mTextureView.getSurfaceTexture();
            assert texture != null;

            // We configure the size of default buffer to be the size of camera preview we want.
            texture.setDefaultBufferSize(mPreviewSize.getWidth(), mPreviewSize.getHeight());

            mImageReaderPreview = ImageReader.newInstance(mPreviewSize.getWidth(), mPreviewSize.getHeight(),
                    ImageFormat.YUV_420_888, 1);
            mImageReaderPreview.setOnImageAvailableListener(mOnPreviewAvailableListener, mBackgroundHandler);

            // This is the output Surface we need to start preview.
            Surface surface = new Surface(texture);

            // We set up a CaptureRequest.Builder with the output Surface.
            mPreviewRequestBuilder = mCameraDevice.createCaptureRequest(CameraDevice.TEMPLATE_PREVIEW);
            mPreviewRequestBuilder.addTarget(surface);
            mPreviewRequestBuilder.addTarget(mImageReaderPreview.getSurface());

            // Here, we create a CameraCaptureSession for camera preview.
            mCameraDevice.createCaptureSession(Arrays.asList(surface, mImageReaderPreview.getSurface()),
                    new CameraCaptureSession.StateCallback() {

                        @Override
                        public void onConfigured(@NonNull CameraCaptureSession cameraCaptureSession) {
                            // The camera is already closed
                            if (null == mCameraDevice) {
                                return;
                            }

                            // When the session is ready, we start displaying the preview.
                            mCaptureSession = cameraCaptureSession;
                            try {
                                // Auto focus should be continuous for camera preview.
                                mPreviewRequestBuilder.set(CaptureRequest.CONTROL_AF_MODE, mFocusMode);
                                if (mFlashSupported) {
                                    mPreviewRequestBuilder.set(CaptureRequest.CONTROL_AE_MODE, mFlashMode);
                                }

                                // Finally, we start displaying the camera preview.
                                mPreviewRequest = mPreviewRequestBuilder.build();
                                mCaptureSession.setRepeatingRequest(mPreviewRequest, mCaptureCallback,
                                        mBackgroundHandler);
                            } catch (CameraAccessException e) {
                                e.printStackTrace();
                            }
                        }

                        @Override
                        public void onConfigureFailed(@NonNull CameraCaptureSession cameraCaptureSession) {
                            Log.d(TAG, "Configuration failed!");
                        }
                    }, null);
        } catch (CameraAccessException e) {
            e.printStackTrace();
        }
    }

    /**
     * This runnable controls access to the underlying receiver, calling it to process frames when
     * available from the camera.  This is designed to run detection on frames as fast as possible
     * (i.e., without unnecessary context switching or waiting on the next frame).
     * <p/>
     * While detection is running on a frame, new frames may be received from the camera.  As these
     * frames come in, the most recent frame is held onto as pending.  As soon as detection and its
     * associated processing are done for the previous frame, detection on the mostly recently
     * received frame will immediately start on the same thread.
     */
    private class FrameProcessingRunnable implements Runnable {

        // This lock guards all of the member variables below.
        private final Object mLock = new Object();
        private boolean mActive = true;
        private int readType = 0; // 0 is qr, 1 is data matrix, 2 is pdf

        private BinaryBitmap mPendingFrameData;

        FrameProcessingRunnable() {

        }

        /**
         * Releases the underlying receiver.  This is only safe to do after the associated thread
         * has completed, which is managed in camera source's release method above.
         */
        @SuppressLint("Assert")
        void release() {
            assert (mProcessingThread.getState() == State.TERMINATED);
        }

        public void setReadType(int readType) {
            this.readType = readType;
        }

        /**
         * Marks the runnable as active/not active.  Signals any blocked threads to continue.
         */
        void setActive(boolean active) {
            synchronized (mLock) {
                mActive = active;
                mLock.notifyAll();
            }
        }

        /**
         * Sets the frame data received from the camera.
         */
        void setNextFrame(Image mImage) {
            synchronized (mLock) {
                if (mPendingFrameData != null) {
                    mPendingFrameData = null;
                }

                ByteBuffer buffer = mImage.getPlanes()[0].getBuffer();
                byte[] data = new byte[buffer.remaining()];
                buffer.get(data);
                int width = mImage.getWidth();
                int height = mImage.getHeight();

                byte[] rotatedData = new byte[data.length];
                for (int y = 0; y < height; y++) {
                    for (int x = 0; x < width; x++)
                        rotatedData[x * height + height - y - 1] = data[x + y * width];
                }
                int tmp = width;
                width = height;
                height = tmp;

                PlanarYUVLuminanceSource source = new PlanarYUVLuminanceSource(rotatedData, width, height, 0, 0,
                        width, height, false);
                mPendingFrameData = new BinaryBitmap(new HybridBinarizer(source));

                // Notify the processor thread if it is waiting on the next frame (see below).
                mLock.notifyAll();
            }
        }

        /**
         * As long as the processing thread is active, this executes detection on frames
         * continuously.  The next pending frame is either immediately available or hasn't been
         * received yet.  Once it is available, we transfer the frame info to local variables and
         * run detection on that frame.  It immediately loops back for the next frame without
         * pausing.
         * <p/>
         * If detection takes longer than the time in between new frames from the camera, this will
         * mean that this loop will run without ever waiting on a frame, avoiding any context
         * switching or frame acquisition time latency.
         * <p/>
         * If you find that this is using more CPU than you'd like, you should probably decrease the
         * FPS setting above to allow for some idle time in between frames.
         */
        @Override
        public void run() {
            Result multiRawResults[] = null;

            while (true) {
                synchronized (mLock) {
                    while (mActive && (mPendingFrameData == null)) {
                        try {
                            // Wait for the next frame to be received from the camera, since we
                            // don't have it yet.
                            mLock.wait();
                        } catch (InterruptedException e) {
                            Log.d(TAG, "Frame processing loop terminated.", e);
                            return;
                        }
                    }

                    if (!mActive) {
                        // Exit the loop once this camera source is stopped or released.  We check
                        // this here, immediately after the wait() above, to handle the case where
                        // setActive(false) had been called, triggering the termination of this
                        // loop.
                        return;
                    }

                    try {
                        switch (readType) {
                        default:
                        case 0:
                            multiRawResults = mQrReader.decodeMultiple(mPendingFrameData);
                            break;
                        case 1:
                            multiRawResults = matrixReader.decodeMultiple(mPendingFrameData, hints);
                            break;
                        case 2:
                            multiRawResults = pdf417Reader.decodeMultiple(mPendingFrameData);
                            break;
                        }

                    } catch (NotFoundException e) {

                    }

                    // We need to clear mPendingFrameData to ensure that this buffer isn't
                    // recycled back to the camera before we are done using that data.
                    mPendingFrameData = null;
                }

                // The code below needs to run outside of synchronization, because this will allow
                // the camera to add pending frame(s) while we are running detection on the current
                // frame.

                onMultiCodeRead(multiRawResults);
                multiRawResults = null;
            }
        }
    }

    private void onMultiCodeRead(final Result[] rawResult) {
        if (rawResult != null && rawResult.length > 0 && rawResult[0] != null) {
            //Log.d(TAG, "onMultiCodeRead() called with: rawResult = [" + rawResult[0].getBarcodeFormat().toString() + "]");
            EventBus.getDefault().post(new MultiResultEvent(rawResult, imageWidth, imageHeight));
        }
    }
}