com.badlogic.gdx.utils.ObjectSet.java Source code

Java tutorial

Introduction

Here is the source code for com.badlogic.gdx.utils.ObjectSet.java

Source

/*******************************************************************************
 * Copyright 2011 See AUTHORS file.
 * 
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 * 
 *   http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 ******************************************************************************/

package com.badlogic.gdx.utils;

import com.badlogic.gdx.math.MathUtils;

import java.util.Iterator;
import java.util.NoSuchElementException;

/** An unordered set where the keys are objects. This implementation uses cuckoo hashing using 3 hashes, random walking, and a
 * small stash for problematic keys. Null keys are not allowed. No allocation is done except when growing the table size. <br>
 * <br>
 * This set performs very fast contains and remove (typically O(1), worst case O(log(n))). Add may be a bit slower, depending on
 * hash collisions. Load factors greater than 0.91 greatly increase the chances the set will have to rehash to the next higher POT
 * size.
 * @author Nathan Sweet */
public class ObjectSet<T> implements Iterable<T> {
    private static final int PRIME1 = 0xbe1f14b1;
    private static final int PRIME2 = 0xb4b82e39;
    private static final int PRIME3 = 0xced1c241;

    public int size;

    T[] keyTable;
    int capacity, stashSize;

    private float loadFactor;
    private int hashShift, mask, threshold;
    private int stashCapacity;
    private int pushIterations;

    private ObjectSetIterator iterator1, iterator2;

    /** Creates a new set with an initial capacity of 32 and a load factor of 0.8. This set will hold 25 items before growing the
     * backing table. */
    public ObjectSet() {
        this(32, 0.8f);
    }

    /** Creates a new set with a load factor of 0.8. This set will hold initialCapacity * 0.8 items before growing the backing
     * table. */
    public ObjectSet(int initialCapacity) {
        this(initialCapacity, 0.8f);
    }

    /** Creates a new set with the specified initial capacity and load factor. This set will hold initialCapacity * loadFactor items
     * before growing the backing table. */
    public ObjectSet(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("initialCapacity must be >= 0: " + initialCapacity);
        if (initialCapacity > 1 << 30)
            throw new IllegalArgumentException("initialCapacity is too large: " + initialCapacity);
        capacity = MathUtils.nextPowerOfTwo(initialCapacity);

        if (loadFactor <= 0)
            throw new IllegalArgumentException("loadFactor must be > 0: " + loadFactor);
        this.loadFactor = loadFactor;

        threshold = (int) (capacity * loadFactor);
        mask = capacity - 1;
        hashShift = 31 - Integer.numberOfTrailingZeros(capacity);
        stashCapacity = Math.max(3, (int) Math.ceil(Math.log(capacity)) * 2);
        pushIterations = Math.max(Math.min(capacity, 8), (int) Math.sqrt(capacity) / 8);

        keyTable = (T[]) new Object[capacity + stashCapacity];
    }

    /** Creates a new set identical to the specified set. */
    public ObjectSet(ObjectSet set) {
        this(set.capacity, set.loadFactor);
        stashSize = set.stashSize;
        System.arraycopy(set.keyTable, 0, keyTable, 0, set.keyTable.length);
        size = set.size;
    }

    /** Returns true if the key was not already in the set. If this set already contains the key, the call leaves the set unchanged
     * and returns false. */
    public boolean add(T key) {
        if (key == null)
            throw new IllegalArgumentException("key cannot be null.");
        T[] keyTable = this.keyTable;

        // Check for existing keys.
        int hashCode = key.hashCode();
        int index1 = hashCode & mask;
        T key1 = keyTable[index1];
        if (key.equals(key1))
            return false;

        int index2 = hash2(hashCode);
        T key2 = keyTable[index2];
        if (key.equals(key2))
            return false;

        int index3 = hash3(hashCode);
        T key3 = keyTable[index3];
        if (key.equals(key3))
            return false;

        // Find key in the stash.
        for (int i = capacity, n = i + stashSize; i < n; i++)
            if (key.equals(keyTable[i]))
                return false;

        // Check for empty buckets.
        if (key1 == null) {
            keyTable[index1] = key;
            if (size++ >= threshold)
                resize(capacity << 1);
            return true;
        }

        if (key2 == null) {
            keyTable[index2] = key;
            if (size++ >= threshold)
                resize(capacity << 1);
            return true;
        }

        if (key3 == null) {
            keyTable[index3] = key;
            if (size++ >= threshold)
                resize(capacity << 1);
            return true;
        }

        push(key, index1, key1, index2, key2, index3, key3);
        return true;
    }

    public void addAll(Array<? extends T> array) {
        addAll(array, 0, array.size);
    }

    public void addAll(Array<? extends T> array, int offset, int length) {
        if (offset + length > array.size)
            throw new IllegalArgumentException(
                    "offset + length must be <= size: " + offset + " + " + length + " <= " + array.size);
        addAll((T[]) array.items, offset, length);
    }

    public void addAll(T... array) {
        addAll(array, 0, array.length);
    }

    public void addAll(T[] array, int offset, int length) {
        ensureCapacity(length);
        for (int i = offset, n = i + length; i < n; i++)
            add(array[i]);
    }

    public void addAll(ObjectSet<T> set) {
        ensureCapacity(set.size);
        for (T key : set)
            add(key);
    }

    /** Skips checks for existing keys. */
    private void addResize(T key) {
        // Check for empty buckets.
        int hashCode = key.hashCode();
        int index1 = hashCode & mask;
        T key1 = keyTable[index1];
        if (key1 == null) {
            keyTable[index1] = key;
            if (size++ >= threshold)
                resize(capacity << 1);
            return;
        }

        int index2 = hash2(hashCode);
        T key2 = keyTable[index2];
        if (key2 == null) {
            keyTable[index2] = key;
            if (size++ >= threshold)
                resize(capacity << 1);
            return;
        }

        int index3 = hash3(hashCode);
        T key3 = keyTable[index3];
        if (key3 == null) {
            keyTable[index3] = key;
            if (size++ >= threshold)
                resize(capacity << 1);
            return;
        }

        push(key, index1, key1, index2, key2, index3, key3);
    }

    private void push(T insertKey, int index1, T key1, int index2, T key2, int index3, T key3) {
        T[] keyTable = this.keyTable;
        int mask = this.mask;

        // Push keys until an empty bucket is found.
        T evictedKey;
        int i = 0, pushIterations = this.pushIterations;
        do {
            // Replace the key and value for one of the hashes.
            switch (MathUtils.random(2)) {
            case 0:
                evictedKey = key1;
                keyTable[index1] = insertKey;
                break;
            case 1:
                evictedKey = key2;
                keyTable[index2] = insertKey;
                break;
            default:
                evictedKey = key3;
                keyTable[index3] = insertKey;
                break;
            }

            // If the evicted key hashes to an empty bucket, put it there and stop.
            int hashCode = evictedKey.hashCode();
            index1 = hashCode & mask;
            key1 = keyTable[index1];
            if (key1 == null) {
                keyTable[index1] = evictedKey;
                if (size++ >= threshold)
                    resize(capacity << 1);
                return;
            }

            index2 = hash2(hashCode);
            key2 = keyTable[index2];
            if (key2 == null) {
                keyTable[index2] = evictedKey;
                if (size++ >= threshold)
                    resize(capacity << 1);
                return;
            }

            index3 = hash3(hashCode);
            key3 = keyTable[index3];
            if (key3 == null) {
                keyTable[index3] = evictedKey;
                if (size++ >= threshold)
                    resize(capacity << 1);
                return;
            }

            if (++i == pushIterations)
                break;

            insertKey = evictedKey;
        } while (true);

        addStash(evictedKey);
    }

    private void addStash(T key) {
        if (stashSize == stashCapacity) {
            // Too many pushes occurred and the stash is full, increase the table size.
            resize(capacity << 1);
            add(key);
            return;
        }
        // Store key in the stash.
        int index = capacity + stashSize;
        keyTable[index] = key;
        stashSize++;
        size++;
    }

    /** Returns true if the key was removed. */
    public boolean remove(T key) {
        int hashCode = key.hashCode();
        int index = hashCode & mask;
        if (key.equals(keyTable[index])) {
            keyTable[index] = null;
            size--;
            return true;
        }

        index = hash2(hashCode);
        if (key.equals(keyTable[index])) {
            keyTable[index] = null;
            size--;
            return true;
        }

        index = hash3(hashCode);
        if (key.equals(keyTable[index])) {
            keyTable[index] = null;
            size--;
            return true;
        }

        return removeStash(key);
    }

    boolean removeStash(T key) {
        T[] keyTable = this.keyTable;
        for (int i = capacity, n = i + stashSize; i < n; i++) {
            if (key.equals(keyTable[i])) {
                removeStashIndex(i);
                size--;
                return true;
            }
        }
        return false;
    }

    void removeStashIndex(int index) {
        // If the removed location was not last, move the last tuple to the removed location.
        stashSize--;
        int lastIndex = capacity + stashSize;
        if (index < lastIndex)
            keyTable[index] = keyTable[lastIndex];
    }

    /** Reduces the size of the backing arrays to be the specified capacity or less. If the capacity is already less, nothing is
     * done. If the map contains more items than the specified capacity, the next highest power of two capacity is used instead. */
    public void shrink(int maximumCapacity) {
        if (maximumCapacity < 0)
            throw new IllegalArgumentException("maximumCapacity must be >= 0: " + maximumCapacity);
        if (size > maximumCapacity)
            maximumCapacity = size;
        if (capacity <= maximumCapacity)
            return;
        maximumCapacity = MathUtils.nextPowerOfTwo(maximumCapacity);
        resize(maximumCapacity);
    }

    /** Clears the map and reduces the size of the backing arrays to be the specified capacity if they are larger. */
    public void clear(int maximumCapacity) {
        if (capacity <= maximumCapacity) {
            clear();
            return;
        }
        size = 0;
        resize(maximumCapacity);
    }

    public void clear() {
        if (size == 0)
            return;
        T[] keyTable = this.keyTable;
        for (int i = capacity + stashSize; i-- > 0;)
            keyTable[i] = null;
        size = 0;
        stashSize = 0;
    }

    public boolean contains(T key) {
        int hashCode = key.hashCode();
        int index = hashCode & mask;
        if (!key.equals(keyTable[index])) {
            index = hash2(hashCode);
            if (!key.equals(keyTable[index])) {
                index = hash3(hashCode);
                if (!key.equals(keyTable[index]))
                    return containsKeyStash(key);
            }
        }
        return true;
    }

    private boolean containsKeyStash(T key) {
        T[] keyTable = this.keyTable;
        for (int i = capacity, n = i + stashSize; i < n; i++)
            if (key.equals(keyTable[i]))
                return true;
        return false;
    }

    public T first() {
        T[] keyTable = this.keyTable;
        for (int i = 0, n = capacity + stashSize; i < n; i++)
            if (keyTable[i] != null)
                return keyTable[i];
        throw new IllegalStateException("IntSet is empty.");
    }

    /** Increases the size of the backing array to accommodate the specified number of additional items. Useful before adding many
     * items to avoid multiple backing array resizes. */
    public void ensureCapacity(int additionalCapacity) {
        int sizeNeeded = size + additionalCapacity;
        if (sizeNeeded >= threshold)
            resize(MathUtils.nextPowerOfTwo((int) (sizeNeeded / loadFactor)));
    }

    private void resize(int newSize) {
        int oldEndIndex = capacity + stashSize;

        capacity = newSize;
        threshold = (int) (newSize * loadFactor);
        mask = newSize - 1;
        hashShift = 31 - Integer.numberOfTrailingZeros(newSize);
        stashCapacity = Math.max(3, (int) Math.ceil(Math.log(newSize)) * 2);
        pushIterations = Math.max(Math.min(newSize, 8), (int) Math.sqrt(newSize) / 8);

        T[] oldKeyTable = keyTable;

        keyTable = (T[]) new Object[newSize + stashCapacity];

        int oldSize = size;
        size = 0;
        stashSize = 0;
        if (oldSize > 0) {
            for (int i = 0; i < oldEndIndex; i++) {
                T key = oldKeyTable[i];
                if (key != null)
                    addResize(key);
            }
        }
    }

    private int hash2(int h) {
        h *= PRIME2;
        return (h ^ h >>> hashShift) & mask;
    }

    private int hash3(int h) {
        h *= PRIME3;
        return (h ^ h >>> hashShift) & mask;
    }

    public String toString() {
        return '{' + toString(", ") + '}';
    }

    public String toString(String separator) {
        if (size == 0)
            return "";
        StringBuilder buffer = new StringBuilder(32);
        T[] keyTable = this.keyTable;
        int i = keyTable.length;
        while (i-- > 0) {
            T key = keyTable[i];
            if (key == null)
                continue;
            buffer.append(key);
            break;
        }
        while (i-- > 0) {
            T key = keyTable[i];
            if (key == null)
                continue;
            buffer.append(separator);
            buffer.append(key);
        }
        return buffer.toString();
    }

    /** Returns an iterator for the keys in the set. Remove is supported. Note that the same iterator instance is returned each time
     * this method is called. Use the {@link ObjectSetIterator} constructor for nested or multithreaded iteration. */
    public ObjectSetIterator<T> iterator() {
        if (iterator1 == null) {
            iterator1 = new ObjectSetIterator(this);
            iterator2 = new ObjectSetIterator(this);
        }
        if (!iterator1.valid) {
            iterator1.reset();
            iterator1.valid = true;
            iterator2.valid = false;
            return iterator1;
        }
        iterator2.reset();
        iterator2.valid = true;
        iterator1.valid = false;
        return iterator2;
    }

    static public <T> ObjectSet<T> with(T... array) {
        ObjectSet set = new ObjectSet();
        set.addAll(array);
        return set;
    }

    static public class ObjectSetIterator<K> implements Iterable<K>, Iterator<K> {
        public boolean hasNext;

        final ObjectSet<K> set;
        int nextIndex, currentIndex;
        boolean valid = true;

        public ObjectSetIterator(ObjectSet<K> set) {
            this.set = set;
            reset();
        }

        public void reset() {
            currentIndex = -1;
            nextIndex = -1;
            findNextIndex();
        }

        void findNextIndex() {
            hasNext = false;
            K[] keyTable = set.keyTable;
            for (int n = set.capacity + set.stashSize; ++nextIndex < n;) {
                if (keyTable[nextIndex] != null) {
                    hasNext = true;
                    break;
                }
            }
        }

        public void remove() {
            if (currentIndex < 0)
                throw new IllegalStateException("next must be called before remove.");
            if (currentIndex >= set.capacity) {
                set.removeStashIndex(currentIndex);
                nextIndex = currentIndex - 1;
                findNextIndex();
            } else {
                set.keyTable[currentIndex] = null;
            }
            currentIndex = -1;
            set.size--;
        }

        public boolean hasNext() {
            if (!valid)
                throw new GdxRuntimeException("#iterator() cannot be used nested.");
            return hasNext;
        }

        public K next() {
            if (!hasNext)
                throw new NoSuchElementException();
            if (!valid)
                throw new GdxRuntimeException("#iterator() cannot be used nested.");
            K key = set.keyTable[nextIndex];
            currentIndex = nextIndex;
            findNextIndex();
            return key;
        }

        public Iterator<K> iterator() {
            return this;
        }

        /** Adds the remaining values to the array. */
        public Array<K> toArray(Array<K> array) {
            while (hasNext)
                array.add(next());
            return array;
        }

        /** Returns a new array containing the remaining values. */
        public Array<K> toArray() {
            return toArray(new Array(true, set.size));
        }
    }
}