Java tutorial
/* Copyright 2013 Daniel Hamacher, Mustafa Elkhunni * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.dhamacher.sentimentanalysis4tweets.preprocessing; import com.csvreader.CsvReader; import java.io.File; import java.util.logging.Level; import java.util.logging.Logger; import weka.core.*; import weka.core.converters.ArffSaver; import weka.filters.Filter; import weka.filters.unsupervised.attribute.StringToWordVector; /** * * @author daniel, mustafa */ public class TweetFeatureExtractor { /** * Method which contructs the arff file for weka with the training data */ public static void constructModel() { Instances instdata = null; try { FastVector atts; atts = new FastVector(); atts.addElement(new Attribute("content", (FastVector) null)); FastVector fvClassVal = new FastVector(4); fvClassVal.addElement(""); fvClassVal.addElement("neutral"); fvClassVal.addElement("negative"); fvClassVal.addElement("positive"); Attribute ClassAttribute = new Attribute("Class", fvClassVal); atts.addElement(ClassAttribute); instdata = new Instances("tweetData", atts, 0); CsvReader data = new CsvReader("../classified data/traindata.csv"); int i = 0; while (data.readRecord()) { double[] vals = new double[instdata.numAttributes()]; String class_id = data.get(0); switch (Integer.parseInt(class_id)) { case 0: class_id = "negative"; break; case 2: class_id = "neutral"; break; case 4: class_id = "positive"; break; } String tweet_content = data.get(5); Instance iInst = new Instance(2); iInst.setValue((Attribute) atts.elementAt(0), tweet_content); iInst.setValue((Attribute) atts.elementAt(1), class_id); instdata.add(iInst); System.out.println("[" + i + "] " + class_id + ":" + tweet_content); i++; } data.close(); StringToWordVector filter = new StringToWordVector(); instdata.setClassIndex(instdata.numAttributes() - 1); filter.setInputFormat(instdata); Instances newdata = Filter.useFilter(instdata, filter); ArffSaver saver = new ArffSaver(); saver.setInstances(newdata); saver.setFile(new File("./data/train2data.arff")); saver.writeBatch(); } catch (Exception ex) { Logger.getLogger(TweetFeatureExtractor.class.getName()).log(Level.SEVERE, null, ex); } } public static void main(String[] args) { constructModel(); } }