com.ery.ertc.estorm.util.Bytes.java Source code

Java tutorial

Introduction

Here is the source code for com.ery.ertc.estorm.util.Bytes.java

Source

/**
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.ery.ertc.estorm.util;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.lang.reflect.Field;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.charset.Charset;
import java.security.AccessController;
import java.security.PrivilegedAction;
import java.security.SecureRandom;
import java.util.Collection;
import java.util.Comparator;
import java.util.Iterator;
import java.util.List;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

import sun.misc.Unsafe;

/**
 * Utility class that handles byte arrays, conversions to/from other types,
 * comparisons, hash code generation, manufacturing keys for HashMaps or
 * HashSets, etc.
 */
public class Bytes {
    // HConstants.UTF8_ENCODING should be updated if this changed
    /** When we encode strings, we always specify UTF8 encoding */
    private static final String UTF8_ENCODING = "UTF-8";

    // HConstants.UTF8_CHARSET should be updated if this changed
    /** When we encode strings, we always specify UTF8 encoding */
    private static final Charset UTF8_CHARSET = Charset.forName(UTF8_ENCODING);

    // HConstants.EMPTY_BYTE_ARRAY should be updated if this changed
    private static final byte[] EMPTY_BYTE_ARRAY = new byte[0];

    private static final Log LOG = LogFactory.getLog(Bytes.class);

    /**
     * Size of boolean in bytes
     */
    public static final int SIZEOF_BOOLEAN = Byte.SIZE / Byte.SIZE;

    /**
     * Size of byte in bytes
     */
    public static final int SIZEOF_BYTE = SIZEOF_BOOLEAN;

    /**
     * Size of char in bytes
     */
    public static final int SIZEOF_CHAR = Character.SIZE / Byte.SIZE;

    /**
     * Size of double in bytes
     */
    public static final int SIZEOF_DOUBLE = Double.SIZE / Byte.SIZE;

    /**
     * Size of float in bytes
     */
    public static final int SIZEOF_FLOAT = Float.SIZE / Byte.SIZE;

    /**
     * Size of int in bytes
     */
    public static final int SIZEOF_INT = Integer.SIZE / Byte.SIZE;

    /**
     * Size of long in bytes
     */
    public static final int SIZEOF_LONG = Long.SIZE / Byte.SIZE;

    /**
     * Size of short in bytes
     */
    public static final int SIZEOF_SHORT = Short.SIZE / Byte.SIZE;

    /**
     * Estimate of size cost to pay beyond payload in jvm for instance of byte
     * []. Estimate based on study of jhat and jprofiler numbers.
     */
    // JHat says BU is 56 bytes.
    // SizeOf which uses java.lang.instrument says 24 bytes. (3 longs?)
    public static final int ESTIMATED_HEAP_TAX = 16;

    /**
     * Returns length of the byte array, returning 0 if the array is null.
     * Useful for calculating sizes.
     * 
     * @param b
     *            byte array, which can be null
     * @return 0 if b is null, otherwise returns length
     */
    final public static int len(byte[] b) {
        return b == null ? 0 : b.length;
    }

    /**
     * Byte array comparator class.
     */
    public static class ByteArrayComparator implements Comparator<byte[]> {
        /**
         * Constructor
         */
        public ByteArrayComparator() {
            super();
        }

        @Override
        public int compare(byte[] left, byte[] right) {
            return compareTo(left, right);
        }

        public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) {
            return LexicographicalComparerHolder.BEST_COMPARER.compareTo(b1, s1, l1, b2, s2, l2);
        }
    }

    /**
     * A {@link ByteArrayComparator} that treats the empty array as the largest
     * value. This is useful for comparing row end keys for regions.
     */
    // TODO: unfortunately, HBase uses byte[0] as both start and end keys for
    // region
    // boundaries. Thus semantically, we should treat empty byte array as the
    // smallest value
    // while comparing row keys, start keys etc; but as the largest value for
    // comparing
    // region boundaries for endKeys.
    public static class RowEndKeyComparator extends ByteArrayComparator {
        @Override
        public int compare(byte[] left, byte[] right) {
            return compare(left, 0, left.length, right, 0, right.length);
        }

        @Override
        public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) {
            if (b1 == b2 && s1 == s2 && l1 == l2) {
                return 0;
            }
            if (l1 == 0) {
                return l2; // 0 or positive
            }
            if (l2 == 0) {
                return -1;
            }
            return super.compare(b1, s1, l1, b2, s2, l2);
        }
    }

    /**
     * Pass this to TreeMaps where byte [] are keys.
     */
    public static Comparator<byte[]> BYTES_COMPARATOR = new ByteArrayComparator();

    /**
     * Read byte-array written with a WritableableUtils.vint prefix.
     * 
     * @param in
     *            Input to read from.
     * @return byte array read off <code>in</code>
     * @throws IOException
     *             e
     */
    public static byte[] readByteArray(final DataInput in) throws IOException {
        int len = WritableUtils.readVInt(in);
        if (len < 0) {
            throw new NegativeArraySizeException(Integer.toString(len));
        }
        byte[] result = new byte[len];
        in.readFully(result, 0, len);
        return result;
    }

    /**
     * Read byte-array written with a WritableableUtils.vint prefix. IOException
     * is converted to a RuntimeException.
     * 
     * @param in
     *            Input to read from.
     * @return byte array read off <code>in</code>
     */
    public static byte[] readByteArrayThrowsRuntime(final DataInput in) {
        try {
            return readByteArray(in);
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
    }

    /**
     * Write byte-array with a WritableableUtils.vint prefix.
     * 
     * @param out
     *            output stream to be written to
     * @param b
     *            array to write
     * @throws IOException
     *             e
     */
    public static void writeByteArray(final DataOutput out, final byte[] b) throws IOException {
        if (b == null) {
            WritableUtils.writeVInt(out, 0);
        } else {
            writeByteArray(out, b, 0, b.length);
        }
    }

    /**
     * Write byte-array to out with a vint length prefix.
     * 
     * @param out
     *            output stream
     * @param b
     *            array
     * @param offset
     *            offset into array
     * @param length
     *            length past offset
     * @throws IOException
     *             e
     */
    public static void writeByteArray(final DataOutput out, final byte[] b, final int offset, final int length)
            throws IOException {
        WritableUtils.writeVInt(out, length);
        out.write(b, offset, length);
    }

    /**
     * Write byte-array from src to tgt with a vint length prefix.
     * 
     * @param tgt
     *            target array
     * @param tgtOffset
     *            offset into target array
     * @param src
     *            source array
     * @param srcOffset
     *            source offset
     * @param srcLength
     *            source length
     * @return New offset in src array.
     */
    public static int writeByteArray(final byte[] tgt, final int tgtOffset, final byte[] src, final int srcOffset,
            final int srcLength) {
        byte[] vint = vintToBytes(srcLength);
        System.arraycopy(vint, 0, tgt, tgtOffset, vint.length);
        int offset = tgtOffset + vint.length;
        System.arraycopy(src, srcOffset, tgt, offset, srcLength);
        return offset + srcLength;
    }

    /**
     * Put bytes at the specified byte array position.
     * 
     * @param tgtBytes
     *            the byte array
     * @param tgtOffset
     *            position in the array
     * @param srcBytes
     *            array to write out
     * @param srcOffset
     *            source offset
     * @param srcLength
     *            source length
     * @return incremented offset
     */
    public static int putBytes(byte[] tgtBytes, int tgtOffset, byte[] srcBytes, int srcOffset, int srcLength) {
        System.arraycopy(srcBytes, srcOffset, tgtBytes, tgtOffset, srcLength);
        return tgtOffset + srcLength;
    }

    /**
     * Write a single byte out to the specified byte array position.
     * 
     * @param bytes
     *            the byte array
     * @param offset
     *            position in the array
     * @param b
     *            byte to write out
     * @return incremented offset
     */
    public static int putByte(byte[] bytes, int offset, byte b) {
        bytes[offset] = b;
        return offset + 1;
    }

    /**
     * Returns a new byte array, copied from the given {@code buf}, from the
     * index 0 (inclusive) to the limit (exclusive), regardless of the current
     * position. The position and the other index parameters are not changed.
     * 
     * @param buf
     *            a byte buffer
     * @return the byte array
     * @see #getBytes(ByteBuffer)
     */
    public static byte[] toBytes(ByteBuffer buf) {
        ByteBuffer dup = buf.duplicate();
        dup.position(0);
        return readBytes(dup);
    }

    private static byte[] readBytes(ByteBuffer buf) {
        byte[] result = new byte[buf.remaining()];
        buf.get(result);
        return result;
    }

    /**
     * @param b
     *            Presumed UTF-8 encoded byte array.
     * @return String made from <code>b</code>
     */
    public static String toString(final byte[] b) {
        if (b == null) {
            return null;
        }
        return toString(b, 0, b.length);
    }

    /**
     * Joins two byte arrays together using a separator.
     * 
     * @param b1
     *            The first byte array.
     * @param sep
     *            The separator to use.
     * @param b2
     *            The second byte array.
     */
    public static String toString(final byte[] b1, String sep, final byte[] b2) {
        return toString(b1, 0, b1.length) + sep + toString(b2, 0, b2.length);
    }

    /**
     * This method will convert utf8 encoded bytes into a string. If the given
     * byte array is null, this method will return null.
     * 
     * @param b
     *            Presumed UTF-8 encoded byte array.
     * @param off
     *            offset into array
     * @param len
     *            length of utf-8 sequence
     * @return String made from <code>b</code> or null
     */
    public static String toString(final byte[] b, int off, int len) {
        if (b == null) {
            return null;
        }
        if (len == 0) {
            return "";
        }
        return new String(b, off, len, UTF8_CHARSET);
    }

    /**
     * Write a printable representation of a byte array.
     * 
     * @param b
     *            byte array
     * @return string
     * @see #toStringBinary(byte[], int, int)
     */
    public static String toStringBinary(final byte[] b) {
        if (b == null)
            return "null";
        return toStringBinary(b, 0, b.length);
    }

    /**
     * Converts the given byte buffer to a printable representation, from the
     * index 0 (inclusive) to the limit (exclusive), regardless of the current
     * position. The position and the other index parameters are not changed.
     * 
     * @param buf
     *            a byte buffer
     * @return a string representation of the buffer's binary contents
     * @see #toBytes(ByteBuffer)
     * @see #getBytes(ByteBuffer)
     */
    public static String toStringBinary(ByteBuffer buf) {
        if (buf == null)
            return "null";
        if (buf.hasArray()) {
            return toStringBinary(buf.array(), buf.arrayOffset(), buf.limit());
        }
        return toStringBinary(toBytes(buf));
    }

    /**
     * Write a printable representation of a byte array. Non-printable
     * characters are hex escaped in the format \\x%02X, eg: \x00 \x05 etc
     * 
     * @param b
     *            array to write out
     * @param off
     *            offset to start at
     * @param len
     *            length to write
     * @return string output
     */
    public static String toStringBinary(final byte[] b, int off, int len) {
        StringBuilder result = new StringBuilder();
        // Just in case we are passed a 'len' that is > buffer length...
        if (off >= b.length)
            return result.toString();
        if (off + len > b.length)
            len = b.length - off;
        for (int i = off; i < off + len; ++i) {
            int ch = b[i] & 0xFF;
            if ((ch >= '0' && ch <= '9') || (ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z')
                    || " `~!@#$%^&*()-_=+[]{}|;:'\",.<>/?".indexOf(ch) >= 0) {
                result.append((char) ch);
            } else {
                result.append(String.format("\\x%02X", ch));
            }
        }
        return result.toString();
    }

    private static boolean isHexDigit(char c) {
        return (c >= 'A' && c <= 'F') || (c >= '0' && c <= '9');
    }

    /**
     * Takes a ASCII digit in the range A-F0-9 and returns the corresponding
     * integer/ordinal value.
     * 
     * @param ch
     *            The hex digit.
     * @return The converted hex value as a byte.
     */
    public static byte toBinaryFromHex(byte ch) {
        if (ch >= 'A' && ch <= 'F')
            return (byte) ((byte) 10 + (byte) (ch - 'A'));
        // else
        return (byte) (ch - '0');
    }

    public static byte[] toBytesBinary(String in) {
        // this may be bigger than we need, but let's be safe.
        byte[] b = new byte[in.length()];
        int size = 0;
        for (int i = 0; i < in.length(); ++i) {
            char ch = in.charAt(i);
            if (ch == '\\' && in.length() > i + 1 && in.charAt(i + 1) == 'x') {
                // ok, take next 2 hex digits.
                char hd1 = in.charAt(i + 2);
                char hd2 = in.charAt(i + 3);

                // they need to be A-F0-9:
                if (!isHexDigit(hd1) || !isHexDigit(hd2)) {
                    // bogus escape code, ignore:
                    continue;
                }
                // turn hex ASCII digit -> number
                byte d = (byte) ((toBinaryFromHex((byte) hd1) << 4) + toBinaryFromHex((byte) hd2));

                b[size++] = d;
                i += 3; // skip 3
            } else {
                b[size++] = (byte) ch;
            }
        }
        // resize:
        byte[] b2 = new byte[size];
        System.arraycopy(b, 0, b2, 0, size);
        return b2;
    }

    /**
     * Converts a string to a UTF-8 byte array.
     * 
     * @param s
     *            string
     * @return the byte array
     */
    public static byte[] toBytes(String s) {
        return s.getBytes(UTF8_CHARSET);
    }

    /**
     * Convert a boolean to a byte array. True becomes -1 and false becomes 0.
     * 
     * @param b
     *            value
     * @return <code>b</code> encoded in a byte array.
     */
    public static byte[] toBytes(final boolean b) {
        return new byte[] { b ? (byte) -1 : (byte) 0 };
    }

    /**
     * Reverses {@link #toBytes(boolean)}
     * 
     * @param b
     *            array
     * @return True or false.
     */
    public static boolean toBoolean(final byte[] b) {
        if (b.length != 1) {
            throw new IllegalArgumentException("Array has wrong size: " + b.length);
        }
        return b[0] != (byte) 0;
    }

    /**
     * Convert a long value to a byte array using big-endian.
     * 
     * @param val
     *            value to convert
     * @return the byte array
     */
    public static byte[] toBytes(long val) {
        byte[] b = new byte[8];
        for (int i = 7; i > 0; i--) {
            b[i] = (byte) val;
            val >>>= 8;
        }
        b[0] = (byte) val;
        return b;
    }

    /**
     * Converts a byte array to a long value. Reverses {@link #toBytes(long)}
     * 
     * @param bytes
     *            array
     * @return the long value
     */
    public static long toLong(byte[] bytes) {
        return toLong(bytes, 0, SIZEOF_LONG);
    }

    /**
     * Converts a byte array to a long value. Assumes there will be
     * {@link #SIZEOF_LONG} bytes available.
     * 
     * @param bytes
     *            bytes
     * @param offset
     *            offset
     * @return the long value
     */
    public static long toLong(byte[] bytes, int offset) {
        return toLong(bytes, offset, SIZEOF_LONG);
    }

    /**
     * Converts a byte array to a long value.
     * 
     * @param bytes
     *            array of bytes
     * @param offset
     *            offset into array
     * @param length
     *            length of data (must be {@link #SIZEOF_LONG})
     * @return the long value
     * @throws IllegalArgumentException
     *             if length is not {@link #SIZEOF_LONG} or if there's not
     *             enough room in the array at the offset indicated.
     */
    public static long toLong(byte[] bytes, int offset, final int length) {
        if (length != SIZEOF_LONG || offset + length > bytes.length) {
            throw explainWrongLengthOrOffset(bytes, offset, length, SIZEOF_LONG);
        }
        long l = 0;
        for (int i = offset; i < offset + length; i++) {
            l <<= 8;
            l ^= bytes[i] & 0xFF;
        }
        return l;
    }

    private static IllegalArgumentException explainWrongLengthOrOffset(final byte[] bytes, final int offset,
            final int length, final int expectedLength) {
        String reason;
        if (length != expectedLength) {
            reason = "Wrong length: " + length + ", expected " + expectedLength;
        } else {
            reason = "offset (" + offset + ") + length (" + length + ") exceed the" + " capacity of the array: "
                    + bytes.length;
        }
        return new IllegalArgumentException(reason);
    }

    /**
     * Put a long value out to the specified byte array position.
     * 
     * @param bytes
     *            the byte array
     * @param offset
     *            position in the array
     * @param val
     *            long to write out
     * @return incremented offset
     * @throws IllegalArgumentException
     *             if the byte array given doesn't have enough room at the
     *             offset specified.
     */
    public static int putLong(byte[] bytes, int offset, long val) {
        if (bytes.length - offset < SIZEOF_LONG) {
            throw new IllegalArgumentException("Not enough room to put a long at" + " offset " + offset + " in a "
                    + bytes.length + " byte array");
        }
        for (int i = offset + 7; i > offset; i--) {
            bytes[i] = (byte) val;
            val >>>= 8;
        }
        bytes[offset] = (byte) val;
        return offset + SIZEOF_LONG;
    }

    /**
     * Presumes float encoded as IEEE 754 floating-point "single format"
     * 
     * @param bytes
     *            byte array
     * @return Float made from passed byte array.
     */
    public static float toFloat(byte[] bytes) {
        return toFloat(bytes, 0);
    }

    /**
     * Presumes float encoded as IEEE 754 floating-point "single format"
     * 
     * @param bytes
     *            array to convert
     * @param offset
     *            offset into array
     * @return Float made from passed byte array.
     */
    public static float toFloat(byte[] bytes, int offset) {
        return Float.intBitsToFloat(toInt(bytes, offset, SIZEOF_INT));
    }

    /**
     * @param bytes
     *            byte array
     * @param offset
     *            offset to write to
     * @param f
     *            float value
     * @return New offset in <code>bytes</code>
     */
    public static int putFloat(byte[] bytes, int offset, float f) {
        return putInt(bytes, offset, Float.floatToRawIntBits(f));
    }

    /**
     * @param f
     *            float value
     * @return the float represented as byte []
     */
    public static byte[] toBytes(final float f) {
        // Encode it as int
        return Bytes.toBytes(Float.floatToRawIntBits(f));
    }

    /**
     * @param bytes
     *            byte array
     * @return Return double made from passed bytes.
     */
    public static double toDouble(final byte[] bytes) {
        return toDouble(bytes, 0);
    }

    /**
     * @param bytes
     *            byte array
     * @param offset
     *            offset where double is
     * @return Return double made from passed bytes.
     */
    public static double toDouble(final byte[] bytes, final int offset) {
        return Double.longBitsToDouble(toLong(bytes, offset, SIZEOF_LONG));
    }

    /**
     * @param bytes
     *            byte array
     * @param offset
     *            offset to write to
     * @param d
     *            value
     * @return New offset into array <code>bytes</code>
     */
    public static int putDouble(byte[] bytes, int offset, double d) {
        return putLong(bytes, offset, Double.doubleToLongBits(d));
    }

    /**
     * Serialize a double as the IEEE 754 double format output. The resultant
     * array will be 8 bytes long.
     * 
     * @param d
     *            value
     * @return the double represented as byte []
     */
    public static byte[] toBytes(final double d) {
        // Encode it as a long
        return Bytes.toBytes(Double.doubleToRawLongBits(d));
    }

    /**
     * Convert an int value to a byte array. Big-endian. Same as what
     * DataOutputStream.writeInt does.
     * 
     * @param val
     *            value
     * @return the byte array
     */
    public static byte[] toBytes(int val) {
        byte[] b = new byte[4];
        for (int i = 3; i > 0; i--) {
            b[i] = (byte) val;
            val >>>= 8;
        }
        b[0] = (byte) val;
        return b;
    }

    /**
     * Converts a byte array to an int value
     * 
     * @param bytes
     *            byte array
     * @return the int value
     */
    public static int toInt(byte[] bytes) {
        return toInt(bytes, 0, SIZEOF_INT);
    }

    /**
     * Converts a byte array to an int value
     * 
     * @param bytes
     *            byte array
     * @param offset
     *            offset into array
     * @return the int value
     */
    public static int toInt(byte[] bytes, int offset) {
        return toInt(bytes, offset, SIZEOF_INT);
    }

    /**
     * Converts a byte array to an int value
     * 
     * @param bytes
     *            byte array
     * @param offset
     *            offset into array
     * @param length
     *            length of int (has to be {@link #SIZEOF_INT})
     * @return the int value
     * @throws IllegalArgumentException
     *             if length is not {@link #SIZEOF_INT} or if there's not enough
     *             room in the array at the offset indicated.
     */
    public static int toInt(byte[] bytes, int offset, final int length) {
        if (length != SIZEOF_INT || offset + length > bytes.length) {
            throw explainWrongLengthOrOffset(bytes, offset, length, SIZEOF_INT);
        }
        int n = 0;
        for (int i = offset; i < (offset + length); i++) {
            n <<= 8;
            n ^= bytes[i] & 0xFF;
        }
        return n;
    }

    /**
     * Put an int value out to the specified byte array position.
     * 
     * @param bytes
     *            the byte array
     * @param offset
     *            position in the array
     * @param val
     *            int to write out
     * @return incremented offset
     * @throws IllegalArgumentException
     *             if the byte array given doesn't have enough room at the
     *             offset specified.
     */
    public static int putInt(byte[] bytes, int offset, int val) {
        if (bytes.length - offset < SIZEOF_INT) {
            throw new IllegalArgumentException("Not enough room to put an int at" + " offset " + offset + " in a "
                    + bytes.length + " byte array");
        }
        for (int i = offset + 3; i > offset; i--) {
            bytes[i] = (byte) val;
            val >>>= 8;
        }
        bytes[offset] = (byte) val;
        return offset + SIZEOF_INT;
    }

    /**
     * Convert a short value to a byte array of {@link #SIZEOF_SHORT} bytes
     * long.
     * 
     * @param val
     *            value
     * @return the byte array
     */
    public static byte[] toBytes(short val) {
        byte[] b = new byte[SIZEOF_SHORT];
        b[1] = (byte) val;
        val >>= 8;
        b[0] = (byte) val;
        return b;
    }

    /**
     * Converts a byte array to a short value
     * 
     * @param bytes
     *            byte array
     * @return the short value
     */
    public static short toShort(byte[] bytes) {
        return toShort(bytes, 0, SIZEOF_SHORT);
    }

    /**
     * Converts a byte array to a short value
     * 
     * @param bytes
     *            byte array
     * @param offset
     *            offset into array
     * @return the short value
     */
    public static short toShort(byte[] bytes, int offset) {
        return toShort(bytes, offset, SIZEOF_SHORT);
    }

    /**
     * Converts a byte array to a short value
     * 
     * @param bytes
     *            byte array
     * @param offset
     *            offset into array
     * @param length
     *            length, has to be {@link #SIZEOF_SHORT}
     * @return the short value
     * @throws IllegalArgumentException
     *             if length is not {@link #SIZEOF_SHORT} or if there's not
     *             enough room in the array at the offset indicated.
     */
    public static short toShort(byte[] bytes, int offset, final int length) {
        if (length != SIZEOF_SHORT || offset + length > bytes.length) {
            throw explainWrongLengthOrOffset(bytes, offset, length, SIZEOF_SHORT);
        }
        short n = 0;
        n ^= bytes[offset] & 0xFF;
        n <<= 8;
        n ^= bytes[offset + 1] & 0xFF;
        return n;
    }

    /**
     * Returns a new byte array, copied from the given {@code buf}, from the
     * position (inclusive) to the limit (exclusive). The position and the other
     * index parameters are not changed.
     * 
     * @param buf
     *            a byte buffer
     * @return the byte array
     * @see #toBytes(ByteBuffer)
     */
    public static byte[] getBytes(ByteBuffer buf) {
        return readBytes(buf.duplicate());
    }

    /**
     * Put a short value out to the specified byte array position.
     * 
     * @param bytes
     *            the byte array
     * @param offset
     *            position in the array
     * @param val
     *            short to write out
     * @return incremented offset
     * @throws IllegalArgumentException
     *             if the byte array given doesn't have enough room at the
     *             offset specified.
     */
    public static int putShort(byte[] bytes, int offset, short val) {
        if (bytes.length - offset < SIZEOF_SHORT) {
            throw new IllegalArgumentException("Not enough room to put a short at" + " offset " + offset + " in a "
                    + bytes.length + " byte array");
        }
        bytes[offset + 1] = (byte) val;
        val >>= 8;
        bytes[offset] = (byte) val;
        return offset + SIZEOF_SHORT;
    }

    /**
     * Convert a BigDecimal value to a byte array
     * 
     * @param val
     * @return the byte array
     */
    public static byte[] toBytes(BigDecimal val) {
        byte[] valueBytes = val.unscaledValue().toByteArray();
        byte[] result = new byte[valueBytes.length + SIZEOF_INT];
        int offset = putInt(result, 0, val.scale());
        putBytes(result, offset, valueBytes, 0, valueBytes.length);
        return result;
    }

    /**
     * Converts a byte array to a BigDecimal
     * 
     * @param bytes
     * @return the char value
     */
    public static BigDecimal toBigDecimal(byte[] bytes) {
        return toBigDecimal(bytes, 0, bytes.length);
    }

    /**
     * Converts a byte array to a BigDecimal value
     * 
     * @param bytes
     * @param offset
     * @param length
     * @return the char value
     */
    public static BigDecimal toBigDecimal(byte[] bytes, int offset, final int length) {
        if (bytes == null || length < SIZEOF_INT + 1 || (offset + length > bytes.length)) {
            return null;
        }

        int scale = toInt(bytes, offset);
        byte[] tcBytes = new byte[length - SIZEOF_INT];
        System.arraycopy(bytes, offset + SIZEOF_INT, tcBytes, 0, length - SIZEOF_INT);
        return new BigDecimal(new BigInteger(tcBytes), scale);
    }

    /**
     * Put a BigDecimal value out to the specified byte array position.
     * 
     * @param bytes
     *            the byte array
     * @param offset
     *            position in the array
     * @param val
     *            BigDecimal to write out
     * @return incremented offset
     */
    public static int putBigDecimal(byte[] bytes, int offset, BigDecimal val) {
        if (bytes == null) {
            return offset;
        }

        byte[] valueBytes = val.unscaledValue().toByteArray();
        byte[] result = new byte[valueBytes.length + SIZEOF_INT];
        offset = putInt(result, offset, val.scale());
        return putBytes(result, offset, valueBytes, 0, valueBytes.length);
    }

    /**
     * @param vint
     *            Integer to make a vint of.
     * @return Vint as bytes array.
     */
    public static byte[] vintToBytes(final long vint) {
        long i = vint;
        int size = WritableUtils.getVIntSize(i);
        byte[] result = new byte[size];
        int offset = 0;
        if (i >= -112 && i <= 127) {
            result[offset] = (byte) i;
            return result;
        }

        int len = -112;
        if (i < 0) {
            i ^= -1L; // take one's complement'
            len = -120;
        }

        long tmp = i;
        while (tmp != 0) {
            tmp = tmp >> 8;
            len--;
        }

        result[offset++] = (byte) len;

        len = (len < -120) ? -(len + 120) : -(len + 112);

        for (int idx = len; idx != 0; idx--) {
            int shiftbits = (idx - 1) * 8;
            long mask = 0xFFL << shiftbits;
            result[offset++] = (byte) ((i & mask) >> shiftbits);
        }
        return result;
    }

    /**
     * @param buffer
     *            buffer to convert
     * @return vint bytes as an integer.
     */
    public static long bytesToVint(final byte[] buffer) {
        int offset = 0;
        byte firstByte = buffer[offset++];
        int len = WritableUtils.decodeVIntSize(firstByte);
        if (len == 1) {
            return firstByte;
        }
        long i = 0;
        for (int idx = 0; idx < len - 1; idx++) {
            byte b = buffer[offset++];
            i = i << 8;
            i = i | (b & 0xFF);
        }
        return (WritableUtils.isNegativeVInt(firstByte) ? ~i : i);
    }

    /**
     * Reads a zero-compressed encoded long from input stream and returns it.
     * 
     * @param buffer
     *            Binary array
     * @param offset
     *            Offset into array at which vint begins.
     * @throws java.io.IOException
     *             e
     * @return deserialized long from stream.
     */
    public static long readVLong(final byte[] buffer, final int offset) throws IOException {
        byte firstByte = buffer[offset];
        int len = WritableUtils.decodeVIntSize(firstByte);
        if (len == 1) {
            return firstByte;
        }
        long i = 0;
        for (int idx = 0; idx < len - 1; idx++) {
            byte b = buffer[offset + 1 + idx];
            i = i << 8;
            i = i | (b & 0xFF);
        }
        return (WritableUtils.isNegativeVInt(firstByte) ? ~i : i);
    }

    /**
     * @param left
     *            left operand
     * @param right
     *            right operand
     * @return 0 if equal, < 0 if left is less than right, etc.
     */
    public static int compareTo(final byte[] left, final byte[] right) {
        return LexicographicalComparerHolder.BEST_COMPARER.compareTo(left, 0, left.length, right, 0, right.length);
    }

    /**
     * Lexicographically compare two arrays.
     * 
     * @param buffer1
     *            left operand
     * @param buffer2
     *            right operand
     * @param offset1
     *            Where to start comparing in the left buffer
     * @param offset2
     *            Where to start comparing in the right buffer
     * @param length1
     *            How much to compare from the left buffer
     * @param length2
     *            How much to compare from the right buffer
     * @return 0 if equal, < 0 if left is less than right, etc.
     */
    public static int compareTo(byte[] buffer1, int offset1, int length1, byte[] buffer2, int offset2,
            int length2) {
        return LexicographicalComparerHolder.BEST_COMPARER.compareTo(buffer1, offset1, length1, buffer2, offset2,
                length2);
    }

    interface Comparer<T> {
        int compareTo(T buffer1, int offset1, int length1, T buffer2, int offset2, int length2);
    }

    static Comparer<byte[]> lexicographicalComparerJavaImpl() {
        return LexicographicalComparerHolder.PureJavaComparer.INSTANCE;
    }

    /**
     * Provides a lexicographical comparer implementation; either a Java
     * implementation or a faster implementation based on {@link Unsafe}.
     * 
     * <p>
     * Uses reflection to gracefully fall back to the Java implementation if
     * {@code Unsafe} isn't available.
     */
    static class LexicographicalComparerHolder {
        static final String UNSAFE_COMPARER_NAME = LexicographicalComparerHolder.class.getName()
                + "$UnsafeComparer";

        static final Comparer<byte[]> BEST_COMPARER = getBestComparer();

        /**
         * Returns the Unsafe-using Comparer, or falls back to the pure-Java
         * implementation if unable to do so.
         */
        static Comparer<byte[]> getBestComparer() {
            try {
                Class<?> theClass = Class.forName(UNSAFE_COMPARER_NAME);

                // yes, UnsafeComparer does implement Comparer<byte[]>
                @SuppressWarnings("unchecked")
                Comparer<byte[]> comparer = (Comparer<byte[]>) theClass.getEnumConstants()[0];
                return comparer;
            } catch (Throwable t) { // ensure we really catch *everything*
                return lexicographicalComparerJavaImpl();
            }
        }

        enum PureJavaComparer implements Comparer<byte[]> {
            INSTANCE;

            @Override
            public int compareTo(byte[] buffer1, int offset1, int length1, byte[] buffer2, int offset2,
                    int length2) {
                // Short circuit equal case
                if (buffer1 == buffer2 && offset1 == offset2 && length1 == length2) {
                    return 0;
                }
                // Bring WritableComparator code local
                int end1 = offset1 + length1;
                int end2 = offset2 + length2;
                for (int i = offset1, j = offset2; i < end1 && j < end2; i++, j++) {
                    int a = (buffer1[i] & 0xff);
                    int b = (buffer2[j] & 0xff);
                    if (a != b) {
                        return a - b;
                    }
                }
                return length1 - length2;
            }
        }

        enum UnsafeComparer implements Comparer<byte[]> {
            INSTANCE;

            static final Unsafe theUnsafe;

            /** The offset to the first element in a byte array. */
            static final int BYTE_ARRAY_BASE_OFFSET;

            static {
                theUnsafe = (Unsafe) AccessController.doPrivileged(new PrivilegedAction<Object>() {
                    @Override
                    public Object run() {
                        try {
                            Field f = Unsafe.class.getDeclaredField("theUnsafe");
                            f.setAccessible(true);
                            return f.get(null);
                        } catch (NoSuchFieldException e) {
                            // It doesn't matter what we throw;
                            // it's swallowed in getBestComparer().
                            throw new Error();
                        } catch (IllegalAccessException e) {
                            throw new Error();
                        }
                    }
                });

                BYTE_ARRAY_BASE_OFFSET = theUnsafe.arrayBaseOffset(byte[].class);

                // sanity check - this should never fail
                if (theUnsafe.arrayIndexScale(byte[].class) != 1) {
                    throw new AssertionError();
                }
            }

            static final boolean littleEndian = ByteOrder.nativeOrder().equals(ByteOrder.LITTLE_ENDIAN);

            /**
             * Returns true if x1 is less than x2, when both values are treated
             * as unsigned.
             */
            static boolean lessThanUnsigned(long x1, long x2) {
                return (x1 + Long.MIN_VALUE) < (x2 + Long.MIN_VALUE);
            }

            /**
             * Lexicographically compare two arrays.
             * 
             * @param buffer1
             *            left operand
             * @param buffer2
             *            right operand
             * @param offset1
             *            Where to start comparing in the left buffer
             * @param offset2
             *            Where to start comparing in the right buffer
             * @param length1
             *            How much to compare from the left buffer
             * @param length2
             *            How much to compare from the right buffer
             * @return 0 if equal, < 0 if left is less than right, etc.
             */
            @Override
            public int compareTo(byte[] buffer1, int offset1, int length1, byte[] buffer2, int offset2,
                    int length2) {
                // Short circuit equal case
                if (buffer1 == buffer2 && offset1 == offset2 && length1 == length2) {
                    return 0;
                }
                int minLength = Math.min(length1, length2);
                int minWords = minLength / SIZEOF_LONG;
                int offset1Adj = offset1 + BYTE_ARRAY_BASE_OFFSET;
                int offset2Adj = offset2 + BYTE_ARRAY_BASE_OFFSET;

                /*
                 * Compare 8 bytes at a time. Benchmarking shows comparing 8
                 * bytes at a time is no slower than comparing 4 bytes at a time
                 * even on 32-bit. On the other hand, it is substantially faster
                 * on 64-bit.
                 */
                for (int i = 0; i < minWords * SIZEOF_LONG; i += SIZEOF_LONG) {
                    long lw = theUnsafe.getLong(buffer1, offset1Adj + (long) i);
                    long rw = theUnsafe.getLong(buffer2, offset2Adj + (long) i);
                    long diff = lw ^ rw;

                    if (diff != 0) {
                        if (!littleEndian) {
                            return lessThanUnsigned(lw, rw) ? -1 : 1;
                        }

                        // Use binary search
                        int n = 0;
                        int y;
                        int x = (int) diff;
                        if (x == 0) {
                            x = (int) (diff >>> 32);
                            n = 32;
                        }

                        y = x << 16;
                        if (y == 0) {
                            n += 16;
                        } else {
                            x = y;
                        }

                        y = x << 8;
                        if (y == 0) {
                            n += 8;
                        }
                        return (int) (((lw >>> n) & 0xFFL) - ((rw >>> n) & 0xFFL));
                    }
                }

                // The epilogue to cover the last (minLength % 8) elements.
                for (int i = minWords * SIZEOF_LONG; i < minLength; i++) {
                    int a = (buffer1[offset1 + i] & 0xff);
                    int b = (buffer2[offset2 + i] & 0xff);
                    if (a != b) {
                        return a - b;
                    }
                }
                return length1 - length2;
            }
        }
    }

    /**
     * @param left
     *            left operand
     * @param right
     *            right operand
     * @return True if equal
     */
    public static boolean equals(final byte[] left, final byte[] right) {
        // Could use Arrays.equals?
        // noinspection SimplifiableConditionalExpression
        if (left == right)
            return true;
        if (left == null || right == null)
            return false;
        if (left.length != right.length)
            return false;
        if (left.length == 0)
            return true;

        // Since we're often comparing adjacent sorted data,
        // it's usual to have equal arrays except for the very last byte
        // so check that first
        if (left[left.length - 1] != right[right.length - 1])
            return false;

        return compareTo(left, right) == 0;
    }

    public static boolean equals(final byte[] left, int leftOffset, int leftLen, final byte[] right,
            int rightOffset, int rightLen) {
        // short circuit case
        if (left == right && leftOffset == rightOffset && leftLen == rightLen) {
            return true;
        }
        // different lengths fast check
        if (leftLen != rightLen) {
            return false;
        }
        if (leftLen == 0) {
            return true;
        }

        // Since we're often comparing adjacent sorted data,
        // it's usual to have equal arrays except for the very last byte
        // so check that first
        if (left[leftOffset + leftLen - 1] != right[rightOffset + rightLen - 1])
            return false;

        return LexicographicalComparerHolder.BEST_COMPARER.compareTo(left, leftOffset, leftLen, right, rightOffset,
                rightLen) == 0;
    }

    /**
     * Return true if the byte array on the right is a prefix of the byte array
     * on the left.
     */
    public static boolean startsWith(byte[] bytes, byte[] prefix) {
        return bytes != null && prefix != null && bytes.length >= prefix.length
                && LexicographicalComparerHolder.BEST_COMPARER.compareTo(bytes, 0, prefix.length, prefix, 0,
                        prefix.length) == 0;
    }

    /**
     * @param a
     *            lower half
     * @param b
     *            upper half
     * @return New array that has a in lower half and b in upper half.
     */
    public static byte[] add(final byte[] a, final byte[] b) {
        return add(a, b, EMPTY_BYTE_ARRAY);
    }

    /**
     * @param a
     *            first third
     * @param b
     *            second third
     * @param c
     *            third third
     * @return New array made from a, b and c
     */
    public static byte[] add(final byte[] a, final byte[] b, final byte[] c) {
        byte[] result = new byte[a.length + b.length + c.length];
        System.arraycopy(a, 0, result, 0, a.length);
        System.arraycopy(b, 0, result, a.length, b.length);
        System.arraycopy(c, 0, result, a.length + b.length, c.length);
        return result;
    }

    /**
     * @param a
     *            array
     * @param length
     *            amount of bytes to grab
     * @return First <code>length</code> bytes from <code>a</code>
     */
    public static byte[] head(final byte[] a, final int length) {
        if (a.length < length) {
            return null;
        }
        byte[] result = new byte[length];
        System.arraycopy(a, 0, result, 0, length);
        return result;
    }

    /**
     * @param a
     *            array
     * @param length
     *            amount of bytes to snarf
     * @return Last <code>length</code> bytes from <code>a</code>
     */
    public static byte[] tail(final byte[] a, final int length) {
        if (a.length < length) {
            return null;
        }
        byte[] result = new byte[length];
        System.arraycopy(a, a.length - length, result, 0, length);
        return result;
    }

    /**
     * @param a
     *            array
     * @param length
     *            new array size
     * @return Value in <code>a</code> plus <code>length</code> prepended 0
     *         bytes
     */
    public static byte[] padHead(final byte[] a, final int length) {
        byte[] padding = new byte[length];
        for (int i = 0; i < length; i++) {
            padding[i] = 0;
        }
        return add(padding, a);
    }

    /**
     * @param a
     *            array
     * @param length
     *            new array size
     * @return Value in <code>a</code> plus <code>length</code> appended 0 bytes
     */
    public static byte[] padTail(final byte[] a, final int length) {
        byte[] padding = new byte[length];
        for (int i = 0; i < length; i++) {
            padding[i] = 0;
        }
        return add(a, padding);
    }

    /**
     * Split passed range. Expensive operation relatively. Uses BigInteger math.
     * Useful splitting ranges for MapReduce jobs.
     * 
     * @param a
     *            Beginning of range
     * @param b
     *            End of range
     * @param num
     *            Number of times to split range. Pass 1 if you want to split
     *            the range in two; i.e. one split.
     * @return Array of dividing values
     */
    public static byte[][] split(final byte[] a, final byte[] b, final int num) {
        return split(a, b, false, num);
    }

    /**
     * Split passed range. Expensive operation relatively. Uses BigInteger math.
     * Useful splitting ranges for MapReduce jobs.
     * 
     * @param a
     *            Beginning of range
     * @param b
     *            End of range
     * @param inclusive
     *            Whether the end of range is prefix-inclusive or is considered
     *            an exclusive boundary. Automatic splits are generally
     *            exclusive and manual splits with an explicit range utilize an
     *            inclusive end of range.
     * @param num
     *            Number of times to split range. Pass 1 if you want to split
     *            the range in two; i.e. one split.
     * @return Array of dividing values
     */
    public static byte[][] split(final byte[] a, final byte[] b, boolean inclusive, final int num) {
        byte[][] ret = new byte[num + 2][];
        int i = 0;
        Iterable<byte[]> iter = iterateOnSplits(a, b, inclusive, num);
        if (iter == null)
            return null;
        for (byte[] elem : iter) {
            ret[i++] = elem;
        }
        return ret;
    }

    /**
     * Iterate over keys within the passed range, splitting at an [a,b)
     * boundary.
     */
    public static Iterable<byte[]> iterateOnSplits(final byte[] a, final byte[] b, final int num) {
        return iterateOnSplits(a, b, false, num);
    }

    /**
     * Iterate over keys within the passed range.
     */
    public static Iterable<byte[]> iterateOnSplits(final byte[] a, final byte[] b, boolean inclusive,
            final int num) {
        byte[] aPadded;
        byte[] bPadded;
        if (a.length < b.length) {
            aPadded = padTail(a, b.length - a.length);
            bPadded = b;
        } else if (b.length < a.length) {
            aPadded = a;
            bPadded = padTail(b, a.length - b.length);
        } else {
            aPadded = a;
            bPadded = b;
        }
        if (compareTo(aPadded, bPadded) >= 0) {
            throw new IllegalArgumentException("b <= a");
        }
        if (num <= 0) {
            throw new IllegalArgumentException("num cannot be < 0");
        }
        byte[] prependHeader = { 1, 0 };
        final BigInteger startBI = new BigInteger(add(prependHeader, aPadded));
        final BigInteger stopBI = new BigInteger(add(prependHeader, bPadded));
        BigInteger diffBI = stopBI.subtract(startBI);
        if (inclusive) {
            diffBI = diffBI.add(BigInteger.ONE);
        }
        final BigInteger splitsBI = BigInteger.valueOf(num + 1);
        if (diffBI.compareTo(splitsBI) < 0) {
            return null;
        }
        final BigInteger intervalBI;
        try {
            intervalBI = diffBI.divide(splitsBI);
        } catch (Exception e) {
            LOG.error("Exception caught during division", e);
            return null;
        }

        final Iterator<byte[]> iterator = new Iterator<byte[]>() {
            private int i = -1;

            @Override
            public boolean hasNext() {
                return i < num + 1;
            }

            @Override
            public byte[] next() {
                i++;
                if (i == 0)
                    return a;
                if (i == num + 1)
                    return b;

                BigInteger curBI = startBI.add(intervalBI.multiply(BigInteger.valueOf(i)));
                byte[] padded = curBI.toByteArray();
                if (padded[1] == 0)
                    padded = tail(padded, padded.length - 2);
                else
                    padded = tail(padded, padded.length - 1);
                return padded;
            }

            @Override
            public void remove() {
                throw new UnsupportedOperationException();
            }

        };

        return new Iterable<byte[]>() {
            @Override
            public Iterator<byte[]> iterator() {
                return iterator;
            }
        };
    }

    /**
     * @param bytes
     *            array to hash
     * @param offset
     *            offset to start from
     * @param length
     *            length to hash
     * */
    public static int hashCode(byte[] bytes, int offset, int length) {
        int hash = 1;
        for (int i = offset; i < offset + length; i++)
            hash = (31 * hash) + (int) bytes[i];
        return hash;
    }

    /**
     * @param t
     *            operands
     * @return Array of byte arrays made from passed array of Text
     */
    public static byte[][] toByteArrays(final String[] t) {
        byte[][] result = new byte[t.length][];
        for (int i = 0; i < t.length; i++) {
            result[i] = Bytes.toBytes(t[i]);
        }
        return result;
    }

    /**
     * @param column
     *            operand
     * @return A byte array of a byte array where first and only entry is
     *         <code>column</code>
     */
    public static byte[][] toByteArrays(final String column) {
        return toByteArrays(toBytes(column));
    }

    /**
     * @param column
     *            operand
     * @return A byte array of a byte array where first and only entry is
     *         <code>column</code>
     */
    public static byte[][] toByteArrays(final byte[] column) {
        byte[][] result = new byte[1][];
        result[0] = column;
        return result;
    }

    /**
     * Bytewise binary increment/deincrement of long contained in byte array on
     * given amount.
     * 
     * @param value
     *            - array of bytes containing long (length <= SIZEOF_LONG)
     * @param amount
     *            value will be incremented on (deincremented if negative)
     * @return array of bytes containing incremented long (length ==
     *         SIZEOF_LONG)
     */
    public static byte[] incrementBytes(byte[] value, long amount) {
        byte[] val = value;
        if (val.length < SIZEOF_LONG) {
            // Hopefully this doesn't happen too often.
            byte[] newvalue;
            if (val[0] < 0) {
                newvalue = new byte[] { -1, -1, -1, -1, -1, -1, -1, -1 };
            } else {
                newvalue = new byte[SIZEOF_LONG];
            }
            System.arraycopy(val, 0, newvalue, newvalue.length - val.length, val.length);
            val = newvalue;
        } else if (val.length > SIZEOF_LONG) {
            throw new IllegalArgumentException("Increment Bytes - value too big: " + val.length);
        }
        if (amount == 0)
            return val;
        if (val[0] < 0) {
            return binaryIncrementNeg(val, amount);
        }
        return binaryIncrementPos(val, amount);
    }

    /* increment/deincrement for positive value */
    private static byte[] binaryIncrementPos(byte[] value, long amount) {
        long amo = amount;
        int sign = 1;
        if (amount < 0) {
            amo = -amount;
            sign = -1;
        }
        for (int i = 0; i < value.length; i++) {
            int cur = ((int) amo % 256) * sign;
            amo = (amo >> 8);
            int val = value[value.length - i - 1] & 0x0ff;
            int total = val + cur;
            if (total > 255) {
                amo += sign;
                total %= 256;
            } else if (total < 0) {
                amo -= sign;
            }
            value[value.length - i - 1] = (byte) total;
            if (amo == 0)
                return value;
        }
        return value;
    }

    /* increment/deincrement for negative value */
    private static byte[] binaryIncrementNeg(byte[] value, long amount) {
        long amo = amount;
        int sign = 1;
        if (amount < 0) {
            amo = -amount;
            sign = -1;
        }
        for (int i = 0; i < value.length; i++) {
            int cur = ((int) amo % 256) * sign;
            amo = (amo >> 8);
            int val = ((~value[value.length - i - 1]) & 0x0ff) + 1;
            int total = cur - val;
            if (total >= 0) {
                amo += sign;
            } else if (total < -256) {
                amo -= sign;
                total %= 256;
            }
            value[value.length - i - 1] = (byte) total;
            if (amo == 0)
                return value;
        }
        return value;
    }

    /**
     * Writes a string as a fixed-size field, padded with zeros.
     */
    public static void writeStringFixedSize(final DataOutput out, String s, int size) throws IOException {
        byte[] b = toBytes(s);
        if (b.length > size) {
            throw new IOException("Trying to write " + b.length + " bytes (" + toStringBinary(b)
                    + ") into a field of length " + size);
        }

        out.writeBytes(s);
        for (int i = 0; i < size - s.length(); ++i)
            out.writeByte(0);
    }

    /**
     * Reads a fixed-size field and interprets it as a string padded with zeros.
     */
    public static String readStringFixedSize(final DataInput in, int size) throws IOException {
        byte[] b = new byte[size];
        in.readFully(b);
        int n = b.length;
        while (n > 0 && b[n - 1] == 0)
            --n;

        return toString(b, 0, n);
    }

    /**
     * Copy the byte array given in parameter and return an instance of a new
     * byte array with the same length and the same content.
     * 
     * @param bytes
     *            the byte array to duplicate
     * @return a copy of the given byte array
     */
    public static byte[] copy(byte[] bytes) {
        if (bytes == null)
            return null;
        byte[] result = new byte[bytes.length];
        System.arraycopy(bytes, 0, result, 0, bytes.length);
        return result;
    }

    /**
     * Copy the byte array given in parameter and return an instance of a new
     * byte array with the same length and the same content.
     * 
     * @param bytes
     *            the byte array to copy from
     * @return a copy of the given designated byte array
     * @param offset
     * @param length
     */
    public static byte[] copy(byte[] bytes, final int offset, final int length) {
        if (bytes == null)
            return null;
        byte[] result = new byte[length];
        System.arraycopy(bytes, offset, result, 0, length);
        return result;
    }

    /**
     * Search sorted array "a" for byte "key". I can't remember if I wrote this
     * or copied it from somewhere. (mcorgan)
     * 
     * @param a
     *            Array to search. Entries must be sorted and unique.
     * @param fromIndex
     *            First index inclusive of "a" to include in the search.
     * @param toIndex
     *            Last index exclusive of "a" to include in the search.
     * @param key
     *            The byte to search for.
     * @return The index of key if found. If not found, return -(index + 1),
     *         where negative indicates "not found" and the "index + 1" handles
     *         the "-0" case.
     */
    public static int unsignedBinarySearch(byte[] a, int fromIndex, int toIndex, byte key) {
        int unsignedKey = key & 0xff;
        int low = fromIndex;
        int high = toIndex - 1;

        while (low <= high) {
            int mid = (low + high) >>> 1;
            int midVal = a[mid] & 0xff;

            if (midVal < unsignedKey) {
                low = mid + 1;
            } else if (midVal > unsignedKey) {
                high = mid - 1;
            } else {
                return mid; // key found
            }
        }
        return -(low + 1); // key not found.
    }

    /**
     * Treat the byte[] as an unsigned series of bytes, most significant bits
     * first. Start by adding 1 to the rightmost bit/byte and carry over all
     * overflows to the more significant bits/bytes.
     * 
     * @param input
     *            The byte[] to increment.
     * @return The incremented copy of "in". May be same length or 1 byte
     *         longer.
     */
    public static byte[] unsignedCopyAndIncrement(final byte[] input) {
        byte[] copy = copy(input);
        if (copy == null) {
            throw new IllegalArgumentException("cannot increment null array");
        }
        for (int i = copy.length - 1; i >= 0; --i) {
            if (copy[i] == -1) {// -1 is all 1-bits, which is the unsigned
                // maximum
                copy[i] = 0;
            } else {
                ++copy[i];
                return copy;
            }
        }
        // we maxed out the array
        byte[] out = new byte[copy.length + 1];
        out[0] = 1;
        System.arraycopy(copy, 0, out, 1, copy.length);
        return out;
    }

    public static boolean equals(List<byte[]> a, List<byte[]> b) {
        if (a == null) {
            if (b == null) {
                return true;
            }
            return false;
        }
        if (b == null) {
            return false;
        }
        if (a.size() != b.size()) {
            return false;
        }
        for (int i = 0; i < a.size(); ++i) {
            if (!Bytes.equals(a.get(i), b.get(i))) {
                return false;
            }
        }
        return true;
    }

    public static boolean isSorted(Collection<byte[]> arrays) {
        byte[] previous = new byte[0];
        for (byte[] array : IterableUtils.nullSafe(arrays)) {
            if (Bytes.compareTo(previous, array) > 0) {
                return false;
            }
            previous = array;
        }
        return true;
    }

    /**
     * Returns the index of the first appearance of the value {@code target} in
     * {@code array}.
     * 
     * @param array
     *            an array of {@code byte} values, possibly empty
     * @param target
     *            a primitive {@code byte} value
     * @return the least index {@code i} for which {@code array[i] == target},
     *         or {@code -1} if no such index exists.
     */
    public static int indexOf(byte[] array, byte target) {
        for (int i = 0; i < array.length; i++) {
            if (array[i] == target) {
                return i;
            }
        }
        return -1;
    }

    /**
     * Returns the start position of the first occurrence of the specified
     * {@code target} within {@code array}, or {@code -1} if there is no such
     * occurrence.
     * 
     * <p>
     * More formally, returns the lowest index {@code i} such that
     * {@code java.util.Arrays.copyOfRange(array, i, i + target.length)}
     * contains exactly the same elements as {@code target}.
     * 
     * @param array
     *            the array to search for the sequence {@code target}
     * @param target
     *            the array to search for as a sub-sequence of {@code array}
     */
    public static int indexOf(byte[] array, byte[] target) {
        if (target.length == 0) {
            return 0;
        }

        outer: for (int i = 0; i < array.length - target.length + 1; i++) {
            for (int j = 0; j < target.length; j++) {
                if (array[i + j] != target[j]) {
                    continue outer;
                }
            }
            return i;
        }
        return -1;
    }

    /**
     * @param array
     *            an array of {@code byte} values, possibly empty
     * @param target
     *            a primitive {@code byte} value
     * @return {@code true} if {@code target} is present as an element anywhere
     *         in {@code array}.
     */
    public static boolean contains(byte[] array, byte target) {
        return indexOf(array, target) > -1;
    }

    /**
     * @param array
     *            an array of {@code byte} values, possibly empty
     * @param target
     *            an array of {@code byte}
     * @return {@code true} if {@code target} is present anywhere in
     *         {@code array}
     */
    public static boolean contains(byte[] array, byte[] target) {
        return indexOf(array, target) > -1;
    }

    private static final SecureRandom RNG = new SecureRandom();

    /**
     * Fill given array with random bytes.
     * 
     * @param b
     *            array which needs to be filled with random bytes
     */
    public static void random(byte[] b) {
        RNG.nextBytes(b);
    }

}