com.google.cloud.dataflow.sdk.util.Reshuffle.java Source code

Java tutorial

Introduction

Here is the source code for com.google.cloud.dataflow.sdk.util.Reshuffle.java

Source

/*
 * Copyright (C) 2015 Google Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not
 * use this file except in compliance with the License. You may obtain a copy of
 * the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations under
 * the License.
 */
package com.google.cloud.dataflow.sdk.util;

import com.google.cloud.dataflow.sdk.transforms.DoFn;
import com.google.cloud.dataflow.sdk.transforms.GroupByKey;
import com.google.cloud.dataflow.sdk.transforms.PTransform;
import com.google.cloud.dataflow.sdk.transforms.ParDo;
import com.google.cloud.dataflow.sdk.transforms.windowing.BoundedWindow;
import com.google.cloud.dataflow.sdk.transforms.windowing.Window;
import com.google.cloud.dataflow.sdk.values.KV;
import com.google.cloud.dataflow.sdk.values.PCollection;

import org.joda.time.Duration;

/**
 * A {@link PTransform} that returns a {@link PCollection} equivalent to its input but operationally
 * provides some of the side effects of a {@link GroupByKey}, in particular preventing fusion of
 * the surrounding transforms, checkpointing and deduplication by id (see
 * {@link ValueWithRecordId}).
 *
 * <p>Performs a {@link GroupByKey} so that the data is key-partitioned. Configures the
 * {@link WindowingStrategy} so that no data is dropped, but doesn't affect the need for
 * the user to specify allowed lateness and accumulation mode before a user-inserted GroupByKey.
 *
 * @param <K> The type of key being reshuffled on.
 * @param <V> The type of value being reshuffled.
 */
public class Reshuffle<K, V> extends PTransform<PCollection<KV<K, V>>, PCollection<KV<K, V>>> {

    private Reshuffle() {
    }

    public static <K, V> Reshuffle<K, V> of() {
        return new Reshuffle<K, V>();
    }

    @Override
    public PCollection<KV<K, V>> apply(PCollection<KV<K, V>> input) {
        WindowingStrategy<?, ?> originalStrategy = input.getWindowingStrategy();
        // If the input has already had its windows merged, then the GBK that performed the merge
        // will have set originalStrategy.getWindowFn() to InvalidWindows, causing the GBK contained
        // here to fail. Instead, we install a valid WindowFn that leaves all windows unchanged.
        Window.Bound<KV<K, V>> rewindow = Window
                .<KV<K, V>>into(new IdentityWindowFn<>(originalStrategy.getWindowFn().windowCoder(),
                        originalStrategy.getWindowFn().assignsToSingleWindow()))
                .triggering(new ReshuffleTrigger<>()).discardingFiredPanes()
                .withAllowedLateness(Duration.millis(BoundedWindow.TIMESTAMP_MAX_VALUE.getMillis()));

        return input.apply(rewindow).apply(GroupByKey.<K, V>create())
                // Set the windowing strategy directly, so that it doesn't get counted as the user having
                // set allowed lateness.
                .setWindowingStrategyInternal(originalStrategy)
                .apply(ParDo.named("ExpandIterable").of(new DoFn<KV<K, Iterable<V>>, KV<K, V>>() {
                    @Override
                    public void processElement(ProcessContext c) {
                        K key = c.element().getKey();
                        for (V value : c.element().getValue()) {
                            c.output(KV.of(key, value));
                        }
                    }
                }));
    }
}