com.google.cloud.dataflow.tutorials.game.Exercise5.java Source code

Java tutorial

Introduction

Here is the source code for com.google.cloud.dataflow.tutorials.game.Exercise5.java

Source

/*
 * Copyright (C) 2015 Google Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not
 * use this file except in compliance with the License. You may obtain a copy of
 * the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations under
 * the License.
 */
package com.google.cloud.dataflow.tutorials.game;

import com.google.api.services.bigquery.model.TableFieldSchema;
import com.google.api.services.bigquery.model.TableReference;
import com.google.api.services.bigquery.model.TableRow;
import com.google.api.services.bigquery.model.TableSchema;
import com.google.cloud.dataflow.sdk.Pipeline;
import com.google.cloud.dataflow.sdk.PipelineResult;
import com.google.cloud.dataflow.sdk.io.BigQueryIO;
import com.google.cloud.dataflow.sdk.io.BigQueryIO.Write.CreateDisposition;
import com.google.cloud.dataflow.sdk.io.BigQueryIO.Write.WriteDisposition;
import com.google.cloud.dataflow.sdk.options.Default;
import com.google.cloud.dataflow.sdk.options.Description;
import com.google.cloud.dataflow.sdk.options.PipelineOptionsFactory;
import com.google.cloud.dataflow.sdk.options.StreamingOptions;
import com.google.cloud.dataflow.sdk.runners.DataflowPipelineRunner;
import com.google.cloud.dataflow.sdk.transforms.DoFn;
import com.google.cloud.dataflow.sdk.transforms.DoFn.RequiresWindowAccess;
import com.google.cloud.dataflow.sdk.transforms.MapElements;
import com.google.cloud.dataflow.sdk.transforms.PTransform;
import com.google.cloud.dataflow.sdk.transforms.ParDo;
import com.google.cloud.dataflow.sdk.transforms.Sum;
import com.google.cloud.dataflow.sdk.transforms.View;
import com.google.cloud.dataflow.sdk.transforms.windowing.FixedWindows;
import com.google.cloud.dataflow.sdk.transforms.windowing.IntervalWindow;
import com.google.cloud.dataflow.sdk.transforms.windowing.Window;
import com.google.cloud.dataflow.sdk.values.KV;
import com.google.cloud.dataflow.sdk.values.PCollection;
import com.google.cloud.dataflow.sdk.values.PCollectionView;
import com.google.cloud.dataflow.sdk.values.TypeDescriptor;
import com.google.cloud.dataflow.tutorials.game.solutions.Exercise1;
import com.google.cloud.dataflow.tutorials.game.solutions.Exercise3;
import com.google.cloud.dataflow.tutorials.game.utils.ChangeMe;
import com.google.cloud.dataflow.tutorials.game.utils.GameEvent;
import com.google.cloud.dataflow.tutorials.game.utils.Options;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import org.joda.time.Duration;
import org.joda.time.Instant;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * Fifth in a series of coding exercises in a gaming domain.
 *
 * <p>This exercise introduces side inputs.
 *
 * <p>See README.md for details.
 */
public class Exercise5 {

    private static final Logger LOG = LoggerFactory.getLogger(Exercise5.class);

    /**
     * Filter out all but those users with a high clickrate, which we will consider as 'spammy' users.
     * We do this by finding the mean total score per user, then using that information as a side
     * input to filter out all but those user scores that are > (mean * SCORE_WEIGHT)
     */
    public static class CalculateSpammyUsers
            extends PTransform<PCollection<KV<String, Integer>>, PCollection<KV<String, Integer>>> {
        private static final Logger LOG = LoggerFactory.getLogger(CalculateSpammyUsers.class);
        private static final double SCORE_WEIGHT = 2.5;

        @Override
        public PCollection<KV<String, Integer>> apply(PCollection<KV<String, Integer>> userScores) {
            // [START EXERCISE 5 PART a]:
            // Get the sum of scores for each user.
            PCollection<KV<String, Integer>> sumScores = userScores.apply("UserSum", Sum.<String>integersPerKey());

            // Extract the score from each element, and use it to find the global mean.
            //  Use built-in transforms Values and Mean.
            final PCollectionView<Double> globalMeanScore = null; /* TODO: YOUR CODE GOES HERE */

            // Filter the user sums using the global mean.
            // Developer Docs: https://cloud.google.com/dataflow/model/par-do#side-inputs
            //
            //   Use ParDo with globalMeanScore as a side input and a custom DoFn to keep only users
            //   with scores that are > (mean * SCORE_WEIGHT)
            PCollection<KV<String, Integer>> filtered = sumScores
                    .apply(new ChangeMe<>() /* TODO: YOUR CODE GOES HERE */);
            // [END EXERCISE 5 PART a]:
            return filtered;
        }
    }

    /** Calculate and output an element's session duration. */
    private static class UserSessionInfoFn extends DoFn<KV<String, Integer>, Integer>
            implements RequiresWindowAccess {

        @Override
        public void processElement(ProcessContext c) {
            IntervalWindow w = (IntervalWindow) c.window();
            int duration = new Duration(w.start(), w.end()).toPeriod().toStandardMinutes().getMinutes();
            c.output(duration);
        }
    }

    /** Options supported by {@link GameStats}. */
    interface Exercise5Options extends Options, StreamingOptions {
        @Description("Numeric value of fixed window duration for user analysis, in minutes")
        @Default.Integer(5)
        Integer getFixedWindowDuration();

        void setFixedWindowDuration(Integer value);
    }

    public static void main(String[] args) throws Exception {

        Exercise5Options options = PipelineOptionsFactory.fromArgs(args).withValidation()
                .as(Exercise5Options.class);
        // Enforce that this pipeline is always run in streaming mode.
        options.setStreaming(true);
        // Allow the pipeline to be cancelled automatically.
        options.setRunner(DataflowPipelineRunner.class);
        Pipeline pipeline = Pipeline.create(options);

        TableReference teamTable = new TableReference();
        teamTable.setDatasetId(options.getOutputDataset());
        teamTable.setProjectId(options.getProject());
        teamTable.setTableId(options.getOutputTableName());

        PCollection<GameEvent> rawEvents = pipeline.apply(new Exercise3.ReadGameEvents(options));

        // Extract username/score pairs from the event stream
        PCollection<KV<String, Integer>> userEvents = rawEvents.apply("ExtractUserScore",
                MapElements.via((GameEvent gInfo) -> KV.of(gInfo.getUser(), gInfo.getScore()))
                        .withOutputType(new TypeDescriptor<KV<String, Integer>>() {
                        }));

        // Calculate the total score per user over fixed windows, and
        // cumulative updates for late data.
        final PCollectionView<Map<String, Integer>> spammersView = userEvents
                .apply(Window.named("FixedWindowsUser").<KV<String, Integer>>into(
                        FixedWindows.of(Duration.standardMinutes(options.getFixedWindowDuration()))))

                // Filter out everyone but those with (SCORE_WEIGHT * avg) clickrate.
                // These might be robots/spammers.
                .apply("CalculateSpammyUsers", new CalculateSpammyUsers())
                // Derive a view from the collection of spammer users. It will be used as a side input
                // in calculating the team score sums, below.
                .apply("CreateSpammersView", View.<String, Integer>asMap());

        // [START EXERCISE 5 PART b]:
        // Calculate the total score per team over fixed windows,
        // and emit cumulative updates for late data. Uses the side input derived above-- the set of
        // suspected robots-- to filter out scores from those users from the sum.
        // Write the results to BigQuery.
        rawEvents
                .apply(Window.named("WindowIntoFixedWindows").<GameEvent>into(
                        FixedWindows.of(Duration.standardMinutes(options.getFixedWindowDuration()))))
                // Filter out the detected spammer users, using the side input derived above.
                //  Use ParDo with spammersView side input to filter out spammers.
                .apply(/* TODO: YOUR CODE GOES HERE */ new ChangeMe<PCollection<GameEvent>, GameEvent>())
                // Extract and sum teamname/score pairs from the event data.
                .apply("ExtractTeamScore", new Exercise1.ExtractAndSumScore("team"))
                // Write the result to BigQuery
                .apply(ParDo.named("FormatTeamWindows").of(new FormatTeamWindowFn()))
                .apply(BigQueryIO.Write.to(teamTable).withSchema(FormatTeamWindowFn.getSchema())
                        .withCreateDisposition(CreateDisposition.CREATE_IF_NEEDED)
                        .withWriteDisposition(WriteDisposition.WRITE_APPEND));
        // [START EXERCISE 5 PART b]:

        // Run the pipeline and wait for the pipeline to finish; capture cancellation requests from the
        // command line.
        PipelineResult result = pipeline.run();
    }

    /** Format a KV of team and associated properties to a BigQuery TableRow. */
    protected static class FormatTeamWindowFn extends DoFn<KV<String, Integer>, TableRow>
            implements RequiresWindowAccess {
        @Override
        public void processElement(ProcessContext c) {
            TableRow row = new TableRow().set("team", c.element().getKey())
                    .set("total_score", c.element().getValue())
                    .set("window_start", ((IntervalWindow) c.window()).start().getMillis() / 1000)
                    .set("processing_time", Instant.now().getMillis() / 1000);
            c.output(row);
        }

        static TableSchema getSchema() {
            List<TableFieldSchema> fields = new ArrayList<>();
            fields.add(new TableFieldSchema().setName("team").setType("STRING"));
            fields.add(new TableFieldSchema().setName("total_score").setType("INTEGER"));
            fields.add(new TableFieldSchema().setName("window_start").setType("TIMESTAMP"));
            fields.add(new TableFieldSchema().setName("processing_time").setType("TIMESTAMP"));
            return new TableSchema().setFields(fields);
        }
    }
}