Java tutorial
/* * Copyright (C) 2016 Stefan Hen * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.insightml.models.clusters; import org.apache.commons.math3.distribution.NormalDistribution; import org.apache.commons.math3.random.Well19937c; import org.junit.Assert; import org.junit.Test; import com.insightml.math.Vectors; import com.insightml.math.distributions.IContDistribution; import com.insightml.models.clusters.GaussianMixtureModels; import com.insightml.models.clusters.GaussianMixtureModels.Components; import com.insightml.models.clusters.GaussianMixtureModels.Point; import com.insightml.utils.types.Triple; public final class GaussianMixtureModelsTest { @Test public void test() { final Well19937c rnd = new Well19937c(0); final double[] data = Vectors.append(new NormalDistribution(rnd, 10, 5).sample(50), new NormalDistribution(rnd, 4000, 100).sample(75)); final Point[] points = new Point[data.length]; for (int i = 0; i < points.length; ++i) { points[i] = new Point(data[i]); } final Triple<IContDistribution[], double[], double[][]> out = new GaussianMixtureModels().run(points, 2, 10); final Components result = new Components(out.getFirst(), out.getSecond()); System.err.println(result); Assert.assertEquals(-685.3993, result.incompleteLogLikelihood(data), 0.0001); Assert.assertEquals(-690.2276, result.bic(data), 0.0001); } }