Java tutorial
/* * JGAAP -- a graphical program for stylometric authorship attribution * Copyright (C) 2009,2011 by Patrick Juola * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as * published by the Free Software Foundation, either version 3 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /** * */ package com.jgaap.classifiers; import java.util.ArrayList; import java.util.Collections; import java.util.List; import java.util.Map.Entry; import org.jscience.mathematics.number.Float64; import org.jscience.mathematics.vector.Float64Matrix; import org.jscience.mathematics.vector.Matrix; import com.google.common.collect.ImmutableMap; import com.google.common.collect.ImmutableSet; import com.jgaap.generics.AnalysisDriver; import com.jgaap.util.Document; import com.jgaap.util.Event; import com.jgaap.util.EventMap; import com.jgaap.util.Pair; /** * MahalanobisDistance class does the generalized squared interpoint distance. * This is the dissimilarity measure between two random vectors from the same * distribution. The random vectors are event histograms or the relative * frequencey of events. We use the sample covariance matrix composed of the * sample mean for each element in the vectors. Here the sample is all the known * eventsets. * * * @author Micahel Ryan * */ public class MahalanobisDistance extends AnalysisDriver { private ImmutableSet<Event> events; private Matrix<Float64> inverseCovarianceMatrix; private ImmutableMap<Document, EventMap> knownHistograms; public String displayName() { return "Mahalanobis Distance"; } public String tooltipText() { return "Generalized Squared Interpoint Distance"; } public boolean showInGUI() { return true; } public void train(List<Document> knowns) { ImmutableSet.Builder<Event> eventsBuilder = ImmutableSet.builder(); ImmutableMap.Builder<Document, EventMap> knownHistogramsBuilder = ImmutableMap.builder(); List<EventMap> histograms = new ArrayList<EventMap>(knowns.size()); for (Document known : knowns) { EventMap histogram = new EventMap(known); eventsBuilder.addAll(histogram.uniqueEvents()); histograms.add(histogram); knownHistogramsBuilder.put(known, histogram); } events = eventsBuilder.build(); knownHistograms = knownHistogramsBuilder.build(); EventMap mu = EventMap.centroid(histograms); double[][] s = new double[events.size()][events.size()]; int i = 0; for (Event x : events) { int j = 0; for (Event y : events) { double tmp = 0; for (EventMap histogram : histograms) { tmp += (histogram.relativeFrequency(x) - mu.relativeFrequency(x)) * (histogram.relativeFrequency(y) - mu.relativeFrequency(y)); } s[i][j] = tmp / (events.size() - 1); if (i == j) { s[i][j] += 0.00001; } j++; } i++; } inverseCovarianceMatrix = Float64Matrix.valueOf(s).pseudoInverse(); } @Override public List<Pair<String, Double>> analyze(Document unknown) { List<Pair<String, Double>> results = new ArrayList<Pair<String, Double>>(); EventMap histogram = new EventMap(unknown); for (Entry<Document, EventMap> entry : knownHistograms.entrySet()) { double[][] tmp = new double[events.size()][1]; int i = 0; for (Event event : events) { tmp[i][0] = histogram.relativeFrequency(event) - entry.getValue().relativeFrequency(event); i++; } Matrix<Float64> difference = Float64Matrix.valueOf(tmp); Matrix<Float64> radicand = difference.transpose().times(inverseCovarianceMatrix).times(difference); double result = radicand.get(0, 0).sqrt().doubleValue(); results.add(new Pair<String, Double>(entry.getKey().getAuthor(), result, 2)); } Collections.sort(results); return results; } }