com.meizu.nlp.classification.utils.DatasetSplitter.java Source code

Java tutorial

Introduction

Here is the source code for com.meizu.nlp.classification.utils.DatasetSplitter.java

Source

package com.meizu.nlp.classification.utils;

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field;
import org.apache.lucene.document.FieldType;
import org.apache.lucene.document.TextField;
import org.apache.lucene.index.IndexWriter;
import org.apache.lucene.index.IndexWriterConfig;
import org.apache.lucene.index.IndexableField;
import org.apache.lucene.index.LeafReader;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.MatchAllDocsQuery;
import org.apache.lucene.search.ScoreDoc;
import org.apache.lucene.search.TopDocs;
import org.apache.lucene.store.Directory;

import java.io.IOException;

/**
 * Utility class for creating training / test / cross validation indexes from the original index.
 */
public class DatasetSplitter {

    private final double crossValidationRatio;
    private final double testRatio;

    /**
     * Create a {@link DatasetSplitter} by giving test and cross validation IDXs sizes
     *
     * @param testRatio            the ratio of the original index to be used for the test IDX as a <code>double</code> between 0.0 and 1.0
     * @param crossValidationRatio the ratio of the original index to be used for the c.v. IDX as a <code>double</code> between 0.0 and 1.0
     */
    public DatasetSplitter(double testRatio, double crossValidationRatio) {
        this.crossValidationRatio = crossValidationRatio;
        this.testRatio = testRatio;
    }

    /**
     * Split a given index into 3 indexes for training, test and cross validation tasks respectively
     *
     * @param originalIndex        an {@link org.apache.lucene.index.LeafReader} on the source index
     * @param trainingIndex        a {@link Directory} used to write the training index
     * @param testIndex            a {@link Directory} used to write the test index
     * @param crossValidationIndex a {@link Directory} used to write the cross validation index
     * @param analyzer             {@link Analyzer} used to create the new docs
     * @param fieldNames           names of fields that need to be put in the new indexes or <code>null</code> if all should be used
     * @throws IOException if any writing operation fails on any of the indexes
     */
    public void split(LeafReader originalIndex, Directory trainingIndex, Directory testIndex,
            Directory crossValidationIndex, Analyzer analyzer, String... fieldNames) throws IOException {

        // create IWs for train / test / cv IDXs
        IndexWriter testWriter = new IndexWriter(testIndex, new IndexWriterConfig(analyzer));
        IndexWriter cvWriter = new IndexWriter(crossValidationIndex, new IndexWriterConfig(analyzer));
        IndexWriter trainingWriter = new IndexWriter(trainingIndex, new IndexWriterConfig(analyzer));

        try {
            int size = originalIndex.maxDoc();

            IndexSearcher indexSearcher = new IndexSearcher(originalIndex);
            TopDocs topDocs = indexSearcher.search(new MatchAllDocsQuery(), Integer.MAX_VALUE);

            // set the type to be indexed, stored, with term vectors
            FieldType ft = new FieldType(TextField.TYPE_STORED);
            ft.setStoreTermVectors(true);
            ft.setStoreTermVectorOffsets(true);
            ft.setStoreTermVectorPositions(true);

            int b = 0;

            // iterate over existing documents
            for (ScoreDoc scoreDoc : topDocs.scoreDocs) {

                // create a new document for indexing
                Document doc = new Document();
                if (fieldNames != null && fieldNames.length > 0) {
                    for (String fieldName : fieldNames) {
                        doc.add(new Field(fieldName,
                                originalIndex.document(scoreDoc.doc).getField(fieldName).stringValue(), ft));
                    }
                } else {
                    for (IndexableField storableField : originalIndex.document(scoreDoc.doc).getFields()) {
                        if (storableField.readerValue() != null) {
                            doc.add(new Field(storableField.name(), storableField.readerValue(), ft));
                        } else if (storableField.binaryValue() != null) {
                            doc.add(new Field(storableField.name(), storableField.binaryValue(), ft));
                        } else if (storableField.stringValue() != null) {
                            doc.add(new Field(storableField.name(), storableField.stringValue(), ft));
                        } else if (storableField.numericValue() != null) {
                            doc.add(new Field(storableField.name(), storableField.numericValue().toString(), ft));
                        }
                    }
                }

                // add it to one of the IDXs
                if (b % 2 == 0 && testWriter.maxDoc() < size * testRatio) {
                    testWriter.addDocument(doc);
                } else if (cvWriter.maxDoc() < size * crossValidationRatio) {
                    cvWriter.addDocument(doc);
                } else {
                    trainingWriter.addDocument(doc);
                }
                b++;
            }
        } catch (Exception e) {
            throw new IOException(e);
        } finally {
            testWriter.commit();
            cvWriter.commit();
            trainingWriter.commit();
            // close IWs
            testWriter.close();
            cvWriter.close();
            trainingWriter.close();
        }
    }

}