Java tutorial
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.naltel.spark; import java.util.regex.Pattern; import com.google.common.collect.Lists; import org.apache.spark.SparkConf; import org.apache.spark.SparkContext; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.function.FlatMapFunction; import org.apache.spark.api.java.function.Function; import org.apache.spark.api.java.function.Function2; import org.apache.spark.sql.SQLContext; import org.apache.spark.sql.DataFrame; import org.apache.spark.api.java.StorageLevels; import org.apache.spark.examples.streaming.StreamingExamples; import org.apache.spark.streaming.Durations; import org.apache.spark.streaming.Time; import org.apache.spark.streaming.api.java.JavaDStream; import org.apache.spark.streaming.api.java.JavaReceiverInputDStream; import org.apache.spark.streaming.api.java.JavaStreamingContext; /** * Use DataFrames and SQL to count words in UTF8 encoded, '\n' delimited text received from the * network every second. * * Usage: JavaSqlNetworkWordCount <hostname> <port> * <hostname> and <port> describe the TCP server that Spark Streaming would connect to receive data. * * To run this on your local machine, you need to first run a Netcat server * `$ nc -lk 9999` * and then run the example * `$ bin/run-example org.apache.spark.examples.streaming.JavaSqlNetworkWordCount localhost 9999` */ public final class JavaSqlNetworkWordCount { private static final Pattern SPACE = Pattern.compile(" "); public static void main(String[] args) { if (args.length < 2) { System.err.println("Usage: JavaNetworkWordCount <hostname> <port>"); System.exit(1); } StreamingExamples.setStreamingLogLevels(); // Create the context with a 1 second batch size SparkConf sparkConf = new SparkConf().setAppName("JavaSqlNetworkWordCount"); JavaStreamingContext ssc = new JavaStreamingContext(sparkConf, Durations.seconds(1)); // Create a JavaReceiverInputDStream on target ip:port and count the // words in input stream of \n delimited text (eg. generated by 'nc') // Note that no duplication in storage level only for running locally. // Replication necessary in distributed scenario for fault tolerance. JavaReceiverInputDStream<String> lines = ssc.socketTextStream(args[0], Integer.parseInt(args[1]), StorageLevels.MEMORY_AND_DISK_SER); JavaDStream<String> words = lines.flatMap(new FlatMapFunction<String, String>() { @Override public Iterable<String> call(String x) { return Lists.newArrayList(SPACE.split(x)); } }); // Convert RDDs of the words DStream to DataFrame and run SQL query words.foreachRDD(new Function2<JavaRDD<String>, Time, Void>() { @Override public Void call(JavaRDD<String> rdd, Time time) { SQLContext sqlContext = JavaSQLContextSingleton.getInstance(rdd.context()); // Convert JavaRDD[String] to JavaRDD[bean class] to DataFrame JavaRDD<JavaRecord> rowRDD = rdd.map(new Function<String, JavaRecord>() { public JavaRecord call(String word) { JavaRecord record = new JavaRecord(); record.setWord(word); return record; } }); DataFrame wordsDataFrame = sqlContext.createDataFrame(rowRDD, JavaRecord.class); // Register as table wordsDataFrame.registerTempTable("words"); // Do word count on table using SQL and print it DataFrame wordCountsDataFrame = sqlContext .sql("select word, count(*) as total from words group by word"); System.out.println("========= " + time + "========="); wordCountsDataFrame.show(); return null; } }); ssc.start(); ssc.awaitTermination(); } } /** Lazily instantiated singleton instance of SQLContext */ class JavaSQLContextSingleton { static private transient SQLContext instance = null; static public SQLContext getInstance(SparkContext sparkContext) { if (instance == null) { instance = new SQLContext(sparkContext); } return instance; } }