com.opengamma.strata.math.impl.function.special.InverseIncompleteBetaFunction.java Source code

Java tutorial

Introduction

Here is the source code for com.opengamma.strata.math.impl.function.special.InverseIncompleteBetaFunction.java

Source

/**
 * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies
 *
 * Please see distribution for license.
 */
package com.opengamma.strata.math.impl.function.special;

import java.util.function.Function;

import com.google.common.math.DoubleMath;
import com.opengamma.strata.collect.ArgChecker;
import com.opengamma.strata.math.MathException;

/**
 * 
 */
public class InverseIncompleteBetaFunction implements Function<Double, Double> {
    //TODO either find another implementation or delete this class

    private final double _a;
    private final double _b;
    private final Function<Double, Double> _lnGamma = new NaturalLogGammaFunction();
    private final Function<Double, Double> _beta;
    private static final double EPS = 1e-9;

    public InverseIncompleteBetaFunction(double a, double b) {
        ArgChecker.notNegativeOrZero(a, "a");
        ArgChecker.notNegativeOrZero(b, "b");
        _a = a;
        _b = b;
        _beta = new IncompleteBetaFunction(a, b);
    }

    //-------------------------------------------------------------------------
    @Override
    public Double apply(Double x) {
        ArgChecker.inRangeInclusive(x, 0d, 1d, "x");
        double pp, p, t, h, w, lnA, lnB, u, a1 = _a - 1;
        double b1 = _b - 1;
        if (_a >= 1 && _b >= 1) {
            pp = x < 0.5 ? x : 1 - x;
            t = Math.sqrt(-2 * Math.log(pp));
            p = (2.30753 + t * 0.27061) / (1 + t * (0.99229 + t * 0.04481)) - t;
            if (p < 0.5) {
                p *= -1;
            }
            a1 = (Math.sqrt(p) - 3.) / 6.;
            double tempA = 1. / (2 * _a - 1);
            double tempB = 1. / (2 * _b - 1);
            h = 2. / (tempA + tempB);
            w = p * Math.sqrt(a1 + h) / h - (tempB - tempA) * (a1 + 5. / 6 - 2. / (3 * h));
            p = _a / (_a + _b + Math.exp(2 * w));
        } else {
            lnA = Math.log(_a / (_a + _b));
            lnB = Math.log(_b / (_a + _b));
            t = Math.exp(_a * lnA) / _a;
            u = Math.exp(_b * lnB) / _b;
            w = t + u;
            if (x < t / w) {
                p = Math.pow(_a * w * x, 1. / _a);
            } else {
                p = 1 - Math.pow(_b * w * (1 - x), 1. / _b);
            }
        }
        double afac = -_lnGamma.apply(_a) - _lnGamma.apply(_b) + _lnGamma.apply(_a + _b);
        double error;
        for (int j = 0; j < 10; j++) {
            if (DoubleMath.fuzzyEquals(p, 0d, 1e-16) || DoubleMath.fuzzyEquals(p, (double) 1, 1e-16)) {
                throw new MathException("a or b too small for accurate evaluation");
            }
            error = _beta.apply(p) - x;
            t = Math.exp(a1 * Math.log(p) + b1 * Math.log(1 - p) + afac);
            u = error / t;
            t = u / (1 - 0.5 * Math.min(1, u * (a1 / p - b1 / (1 - p))));
            p -= t;
            if (p <= 0) {
                p = 0.5 * (p + t);
            }
            if (p >= 1) {
                p = 0.5 * (p + t + 1);
            }
            if (Math.abs(t) < EPS * p && j > 0) {
                break;
            }
        }
        return p;
    }

}