Java tutorial
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.sdw.dream.spark.examples.ml; // $example on$ import java.util.Arrays; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.ml.feature.CountVectorizer; import org.apache.spark.ml.feature.CountVectorizerModel; import org.apache.spark.sql.DataFrame; import org.apache.spark.sql.Row; import org.apache.spark.sql.RowFactory; import org.apache.spark.sql.SQLContext; import org.apache.spark.sql.types.*; // $example off$ public class JavaCountVectorizerExample { public static void main(String[] args) { SparkConf conf = new SparkConf().setAppName("JavaCountVectorizerExample"); JavaSparkContext jsc = new JavaSparkContext(conf); SQLContext sqlContext = new SQLContext(jsc); // $example on$ // Input data: Each row is a bag of words from a sentence or document. JavaRDD<Row> jrdd = jsc.parallelize(Arrays.asList(RowFactory.create(Arrays.asList("a", "b", "c")), RowFactory.create(Arrays.asList("a", "b", "b", "c", "a")))); StructType schema = new StructType(new StructField[] { new StructField("text", new ArrayType(DataTypes.StringType, true), false, Metadata.empty()) }); DataFrame df = sqlContext.createDataFrame(jrdd, schema); // fit a CountVectorizerModel from the corpus CountVectorizerModel cvModel = new CountVectorizer().setInputCol("text").setOutputCol("feature") .setVocabSize(3).setMinDF(2).fit(df); // alternatively, define CountVectorizerModel with a-priori vocabulary CountVectorizerModel cvm = new CountVectorizerModel(new String[] { "a", "b", "c" }).setInputCol("text") .setOutputCol("feature"); cvModel.transform(df).show(); // $example off$ } }