Java tutorial
/*- * ========================LICENSE_START================================= * zlibsvm-core * %% * Copyright (C) 2014 - 2017 Heilbronn University - Medical Informatics * %% * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * =========================LICENSE_END================================== */ package de.hsheilbronn.mi.domain; import de.hsheilbronn.mi.configuration.SvmConfigurationBuilder; import de.hsheilbronn.mi.process.AbstractSvmTool; import de.hsheilbronn.mi.util.PrimitiveHelper; import libsvm.svm_model; import org.apache.commons.lang3.ArrayUtils; import java.util.List; import java.util.Map; /** * @author rz */ public class NativeSvmModelWrapper { protected svm_model svmModel; public NativeSvmModelWrapper(svm_model svmModel) { this.svmModel = svmModel; } public NativeSvmModelWrapper(SvmConfigurationBuilder svmConfigurationBuilder, int probabilityEstimates, List<Double> rhoConstants, List<Integer> labelForEachClass, List<Double> probabilityA, List<Double> probabilityB, List<Integer> numberOfSVforEachClass, int numberOfClasses, int amountOfSupportVectors) { this(svmConfigurationBuilder, probabilityEstimates, rhoConstants, labelForEachClass, probabilityA, probabilityB, numberOfSVforEachClass, numberOfClasses, amountOfSupportVectors, null, null); } public NativeSvmModelWrapper(SvmConfigurationBuilder svmConfigurationBuilder, int probabilityEstimates, List<Double> rhoConstants, List<Integer> labelForEachClass, List<Double> probabilityA, List<Double> probabilityB, List<Integer> numberOfSVforEachClass, int numberOfClasses, int amountOfSupportVectors, Map<Integer, List<Double>> svCoefficients, Map<Integer, List<SvmFeature>> supportVectors) { svm_model nativeSvmModel = new svm_model(); nativeSvmModel.l = (amountOfSupportVectors); nativeSvmModel.nr_class = (numberOfClasses); nativeSvmModel.rho = (ArrayUtils.toPrimitive(rhoConstants.toArray(new Double[rhoConstants.size()]))); nativeSvmModel.probA = (ArrayUtils.toPrimitive(probabilityA.toArray(new Double[probabilityA.size()]))); nativeSvmModel.probB = (ArrayUtils.toPrimitive(probabilityB.toArray(new Double[probabilityB.size()]))); nativeSvmModel.label = ((ArrayUtils .toPrimitive(labelForEachClass.toArray(new Integer[labelForEachClass.size()])))); nativeSvmModel.nSV = (ArrayUtils .toPrimitive(numberOfSVforEachClass.toArray(new Integer[numberOfSVforEachClass.size()]))); if (svCoefficients != null) { nativeSvmModel.sv_coef = (PrimitiveHelper.doubleMapTo2dArray(svCoefficients)); } if (supportVectors != null) { nativeSvmModel.SV = (PrimitiveHelper.svmFeatureMapTo2dArray(supportVectors)); } nativeSvmModel.param = AbstractSvmTool .unwrap((svmConfigurationBuilder.setProbability(probabilityEstimates == 1 ? true : false).build())); this.svmModel = nativeSvmModel; } public svm_model getSvmModel() { return svmModel; } }