edu.cmu.tetrad.util.RandomUtil.java Source code

Java tutorial

Introduction

Here is the source code for edu.cmu.tetrad.util.RandomUtil.java

Source

///////////////////////////////////////////////////////////////////////////////
// For information as to what this class does, see the Javadoc, below.       //
// Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,       //
// 2007, 2008, 2009, 2010, 2014, 2015 by Peter Spirtes, Richard Scheines, Joseph   //
// Ramsey, and Clark Glymour.                                                //
//                                                                           //
// This program is free software; you can redistribute it and/or modify      //
// it under the terms of the GNU General Public License as published by      //
// the Free Software Foundation; either version 2 of the License, or         //
// (at your option) any later version.                                       //
//                                                                           //
// This program is distributed in the hope that it will be useful,           //
// but WITHOUT ANY WARRANTY; without even the implied warranty of            //
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the             //
// GNU General Public License for more details.                              //
//                                                                           //
// You should have received a copy of the GNU General Public License         //
// along with this program; if not, write to the Free Software               //
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA //
///////////////////////////////////////////////////////////////////////////////

package edu.cmu.tetrad.util;

import org.apache.commons.math3.distribution.*;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.Well19937c;
import org.apache.commons.math3.random.Well44497b;

import java.util.Date;

/**
 * Provides a common random number generator to be used throughout Tetrad, to avoid problems that happen when random
 * number generators are created more often than once per millisecond. When this happens, the generators are synced, and
 * there is less randomness than expected.
 * <p/>
 * A seed can be set for the generator using the <code>setSeed</code> method. This is useful if an experiment needs to
 * be repeated under different conditions. The seed for an experiment can be printed using the <code>getSeed</code>
 * method.
 * <p/>
 * The 64-bit Mersenne Twister implementation from the COLT library is used to generate random numbers.
 * <p/>
 * To see what distributions are currently supported, look at the methods of the class. These many change over time.
 *
 * @author Joseph Ramsey
 */
public class RandomUtil {

    /**
     * The singleton instance.
     */
    private static final RandomUtil randomUtil = new RandomUtil();

    // Random number generator from the Apache library.
    private RandomGenerator randomGenerator;

    NormalDistribution normal = new NormalDistribution(0, 1);

    private long seed;

    //========================================CONSTRUCTORS===================================//

    /**
     * Constructs a new random number generator based on the getModel date in milliseconds.
     */
    private RandomUtil() {
        this(new Date().getTime());
    }

    /**
     * Constructs a new random number generator using the given seed.
     *
     * @param seed A long value.
     */
    private RandomUtil(long seed) {
        setSeed(seed);
    }

    /**
     * @return the singleton instance of this class.
     */
    public static RandomUtil getInstance() {
        return randomUtil;
    }

    //=======================================PUBLIC METHODS=================================//

    /**
     * Returns an integer in the range 0 to n - 1, inclusive.
     *
     * @param n Ibid.
     * @return Ibid.
     */
    public int nextInt(int n) {
        return randomGenerator.nextInt(n);
    }

    public double nextDouble() {
        return randomGenerator.nextDouble();
    }

    /**
     * 
     * Returns a random double from U(low, high).
     *
     * @param low  Ibid.
     * @param high Ibid.
     * @return Ibid.
     */
    public double nextUniform(double low, double high) {
        return new UniformRealDistribution(randomGenerator, low, high).sample();
    }

    /**
     * Returns a random gaussian from N(mean, sd).
     *
     * @param mean The mean of the Normal.
     * @param sd   The standard deviation of the Normal.
     * @return Ibid.
     */
    public double nextNormal(double mean, double sd) {
        if (sd <= 0) {
            throw new IllegalArgumentException("Standard deviation must be non-negative: " + sd);
        }

        return (normal.sample() - mean) / sd;

        //        return new NormalDistribution(randomGenerator, mean, sd).sample();
    }

    /**
     * Returns a random gaussian from N(mean, sd).
     *
     * @param mean The mean of the Normal.
     * @param sd   The standard deviation of the Normal.
     * @return Ibid.
     */
    public double nextTruncatedNormal(double mean, double sd, double low, double high) {
        if (sd < 0) {
            throw new IllegalArgumentException("Standard deviation must be non-negative: " + sd);
        }

        if (low >= high) {
            throw new IllegalArgumentException("Low must be less than high.");
        }

        double d;

        while (true) {
            d = nextNormal(mean, sd);
            if (d >= low && d <= high)
                break;
        }

        return d;
    }

    /**
     * Sets the seed to the given value.
     *
     * @param seed A long value. Once this seed is set, the behavior of the random number generator is deterministic, so
     *             setting the seed can be used to repeat previous behavior.
     */
    public void setSeed(long seed) {

        // Apache offers several random number generators; picking one that works pretty well.
        randomGenerator = new Well44497b(seed);
        normal = new NormalDistribution(randomGenerator, 0, 1);
        this.seed = seed;
    }

    /**
     * Returns the next random number drawn from a Poisson distribution with the given mean.
     *
     * @param lambda A positive real number equal to the expected number of occurrences during a given interval. See
     *               Wikipedia.
     * @return Ibid.
     */
    public double nextPoisson(double lambda) {
        return new PoissonDistribution(randomGenerator, lambda, 1.0E-12D, 100000).sample();
    }

    /**
     * Returns Normal PDF value for a normal with the given mean and standard deviation.
     *
     * @param mean  The mean of the normal to be used.
     * @param sd    The standard deviation of the normal to be used.
     * @param value The domain value for the PDF.
     * @return Ibid.
     */
    public double normalPdf(double mean, double sd, double value) {
        return new NormalDistribution(randomGenerator, mean, sd).density(value);
    }

    /**
     * Returns Normal CDF value for a normal with the given mean and standard deviation.
     *
     * @param mean  The mean of the normal to be used.
     * @param sd    The standard deviation of the normal to be used.
     * @param value The domain value for the CDF.
     * @return Ibid.
     */
    public double normalCdf(double mean, double sd, double value) {
        return normal.cumulativeProbability((value - mean) / sd);
        //        value = (value - mean) / sd;
        //        return ProbUtils.normalCdf(value);
    }

    /**
     * Returns the next random number drawn from the Beta distribution with the given alpha and beta values. By changing
     * the alpha and beta parameters, radically different distibutions can be achieved. The Beta function is related to
     * order statistics.
     *
     * @param alpha See Wikipedia. This is the first parameter.
     * @param beta  See Wikipedia. This is the second parameter.
     * @return Ibid.
     */
    public double nextBeta(double alpha, double beta) {
        return ProbUtils.betaRand(alpha, beta);
    }

    /**
     * Returns the next random number drawn from the Student T distribution with the given degrees of freedom.
     *
     * @param df The degrees of freedom. See any stats book.
     * @return Ibid.
     */
    public double nextT(double df) {
        return new TDistribution(randomGenerator, df).sample();
    }

    /**
     * Returns the next random number drawn from the Exponential distribution with the given lambda.
     *
     * @param lambda The rate parameter. See Wikipedia.
     * @return Ibid.
     */
    public double nextExponential(double lambda) {
        return new ExponentialDistribution(randomGenerator, lambda).sample();
    }

    /**
     * Returns the next random number drawn from the given Chi Square distrubution with the given degrees of freedom.
     *
     * @param df The degrees of freedom.
     * @return Ibid.
     */
    public double nextChiSquare(double df) {
        return new ChiSquaredDistribution(randomGenerator, df).sample();
    }

    /**
     * Returns the next random number drawn from the Gamma distribution with the given alpha and lambda.
     *
     * @param shape The shape parameter.
     * @param scale The scale parameter.
     * @return Ibid.
     */
    public double nextGamma(double shape, double scale) {
        return new GammaDistribution(randomGenerator, shape, scale).sample();
    }

    public long getSeed() {
        return seed;
    }

    public RandomGenerator getRandomGenerator() {
        return randomGenerator;
    }
}