edu.mit.ll.vizlinc.highlight.TokenSources.java Source code

Java tutorial

Introduction

Here is the source code for edu.mit.ll.vizlinc.highlight.TokenSources.java

Source

/*
 * Created on 28-Oct-2004
 */
package edu.mit.ll.vizlinc.highlight;
/**
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

import java.io.IOException;
import java.io.StringReader;
import java.util.ArrayList;
import java.util.Comparator;

import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.Token;
import org.apache.lucene.analysis.TokenStream;
import org.apache.lucene.analysis.tokenattributes.CharTermAttribute;
import org.apache.lucene.analysis.tokenattributes.OffsetAttribute;
import org.apache.lucene.analysis.tokenattributes.PositionIncrementAttribute;
import org.apache.lucene.document.Document;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.TermFreqVector;
import org.apache.lucene.index.TermPositionVector;
import org.apache.lucene.index.TermVectorOffsetInfo;
import org.apache.lucene.util.ArrayUtil;

/**
 * Hides implementation issues associated with obtaining a TokenStream for use
 * with the higlighter - can obtain from TermFreqVectors with offsets and
 * (optionally) positions or from Analyzer class reparsing the stored content.
 */
public class TokenSources {
    /**
     * A convenience method that tries to first get a TermPositionVector for the
     * specified docId, then, falls back to using the passed in
     * {@link org.apache.lucene.document.Document} to retrieve the TokenStream.
     * This is useful when you already have the document, but would prefer to use
     * the vector first.
     * 
     * @param reader The {@link org.apache.lucene.index.IndexReader} to use to try
     *        and get the vector from
     * @param docId The docId to retrieve.
     * @param field The field to retrieve on the document
     * @param doc The document to fall back on
     * @param analyzer The analyzer to use for creating the TokenStream if the
     *        vector doesn't exist
     * @return The {@link org.apache.lucene.analysis.TokenStream} for the
     *         {@link org.apache.lucene.document.Fieldable} on the
     *         {@link org.apache.lucene.document.Document}
     * @throws IOException if there was an error loading
     */
    public static TokenStream getAnyTokenStream(IndexReader reader, int docId, String field, Document doc,
            Analyzer analyzer) throws IOException {
        TokenStream ts = null;

        TermFreqVector tfv = reader.getTermFreqVector(docId, field);
        if (tfv != null) {
            if (tfv instanceof TermPositionVector) {
                ts = getTokenStream((TermPositionVector) tfv);
            }
        }
        // No token info stored so fall back to analyzing raw content
        if (ts == null) {
            ts = getTokenStream(doc, field, analyzer);
        }
        return ts;
    }

    /**
     * A convenience method that tries a number of approaches to getting a token
     * stream. The cost of finding there are no termVectors in the index is
     * minimal (1000 invocations still registers 0 ms). So this "lazy" (flexible?)
     * approach to coding is probably acceptable
     * 
     * @param reader
     * @param docId
     * @param field
     * @param analyzer
     * @return null if field not stored correctly
     * @throws IOException
     */
    public static TokenStream getAnyTokenStream(IndexReader reader, int docId, String field, Analyzer analyzer)
            throws IOException {
        TokenStream ts = null;

        TermFreqVector tfv = reader.getTermFreqVector(docId, field);
        if (tfv != null) {
            if (tfv instanceof TermPositionVector) {
                ts = getTokenStream((TermPositionVector) tfv);
            }
        }
        // No token info stored so fall back to analyzing raw content
        if (ts == null) {
            ts = getTokenStream(reader, docId, field, analyzer);
        }
        return ts;
    }

    public static TokenStream getTokenStream(TermPositionVector tpv) {
        // assumes the worst and makes no assumptions about token position
        // sequences.
        return getTokenStream(tpv, false);
    }

    /**
     * Low level api. Returns a token stream or null if no offset info available
     * in index. This can be used to feed the highlighter with a pre-parsed token
     * stream
     * 
     * In my tests the speeds to recreate 1000 token streams using this method
     * are: - with TermVector offset only data stored - 420 milliseconds - with
     * TermVector offset AND position data stored - 271 milliseconds (nb timings
     * for TermVector with position data are based on a tokenizer with contiguous
     * positions - no overlaps or gaps) The cost of not using TermPositionVector
     * to store pre-parsed content and using an analyzer to re-parse the original
     * content: - reanalyzing the original content - 980 milliseconds
     * 
     * The re-analyze timings will typically vary depending on - 1) The complexity
     * of the analyzer code (timings above were using a
     * stemmer/lowercaser/stopword combo) 2) The number of other fields (Lucene
     * reads ALL fields off the disk when accessing just one document field - can
     * cost dear!) 3) Use of compression on field storage - could be faster due to
     * compression (less disk IO) or slower (more CPU burn) depending on the
     * content.
     * 
     * @param tpv
     * @param tokenPositionsGuaranteedContiguous true if the token position
     *        numbers have no overlaps or gaps. If looking to eek out the last
     *        drops of performance, set to true. If in doubt, set to false.
     */
    public static TokenStream getTokenStream(TermPositionVector tpv, boolean tokenPositionsGuaranteedContiguous) {
        if (!tokenPositionsGuaranteedContiguous && tpv.getTermPositions(0) != null) {
            return new TokenStreamFromTermPositionVector(tpv);
        }

        // an object used to iterate across an array of tokens
        final class StoredTokenStream extends TokenStream {
            Token tokens[];

            int currentToken = 0;

            CharTermAttribute termAtt;

            OffsetAttribute offsetAtt;

            PositionIncrementAttribute posincAtt;

            StoredTokenStream(Token tokens[]) {
                this.tokens = tokens;
                termAtt = addAttribute(CharTermAttribute.class);
                offsetAtt = addAttribute(OffsetAttribute.class);
                posincAtt = addAttribute(PositionIncrementAttribute.class);
            }

            @Override
            public boolean incrementToken() throws IOException {
                if (currentToken >= tokens.length) {
                    return false;
                }
                Token token = tokens[currentToken++];
                clearAttributes();
                termAtt.setEmpty().append(token);
                offsetAtt.setOffset(token.startOffset(), token.endOffset());
                posincAtt.setPositionIncrement(currentToken <= 1
                        || tokens[currentToken - 1].startOffset() > tokens[currentToken - 2].startOffset() ? 1 : 0);
                return true;
            }
        }
        // code to reconstruct the original sequence of Tokens
        String[] terms = tpv.getTerms();
        int[] freq = tpv.getTermFrequencies();
        int totalTokens = 0;
        for (int t = 0; t < freq.length; t++) {
            totalTokens += freq[t];
        }
        Token tokensInOriginalOrder[] = new Token[totalTokens];
        ArrayList<Token> unsortedTokens = null;
        for (int t = 0; t < freq.length; t++) {
            TermVectorOffsetInfo[] offsets = tpv.getOffsets(t);
            if (offsets == null) {
                throw new IllegalArgumentException("Required TermVector Offset information was not found");
            }

            int[] pos = null;
            if (tokenPositionsGuaranteedContiguous) {
                // try get the token position info to speed up assembly of tokens into
                // sorted sequence
                pos = tpv.getTermPositions(t);
            }
            if (pos == null) {
                // tokens NOT stored with positions or not guaranteed contiguous - must
                // add to list and sort later
                if (unsortedTokens == null) {
                    unsortedTokens = new ArrayList<Token>();
                }
                for (int tp = 0; tp < offsets.length; tp++) {
                    Token token = new Token(terms[t], offsets[tp].getStartOffset(), offsets[tp].getEndOffset());
                    unsortedTokens.add(token);
                }
            } else {
                // We have positions stored and a guarantee that the token position
                // information is contiguous

                // This may be fast BUT wont work if Tokenizers used which create >1
                // token in same position or
                // creates jumps in position numbers - this code would fail under those
                // circumstances

                // tokens stored with positions - can use this to index straight into
                // sorted array
                for (int tp = 0; tp < pos.length; tp++) {
                    Token token = new Token(terms[t], offsets[tp].getStartOffset(), offsets[tp].getEndOffset());
                    tokensInOriginalOrder[pos[tp]] = token;
                }
            }
        }
        // If the field has been stored without position data we must perform a sort
        if (unsortedTokens != null) {
            tokensInOriginalOrder = unsortedTokens.toArray(new Token[unsortedTokens.size()]);
            ArrayUtil.mergeSort(tokensInOriginalOrder, new Comparator<Token>() {
                public int compare(Token t1, Token t2) {
                    if (t1.startOffset() == t2.startOffset())
                        return t1.endOffset() - t2.endOffset();
                    else
                        return t1.startOffset() - t2.startOffset();
                }
            });
        }
        return new StoredTokenStream(tokensInOriginalOrder);
    }

    public static TokenStream getTokenStream(IndexReader reader, int docId, String field) throws IOException {
        TermFreqVector tfv = reader.getTermFreqVector(docId, field);
        if (tfv == null) {
            throw new IllegalArgumentException(
                    field + " in doc #" + docId + "does not have any term position data stored");
        }
        if (tfv instanceof TermPositionVector) {
            TermPositionVector tpv = (TermPositionVector) reader.getTermFreqVector(docId, field);
            return getTokenStream(tpv);
        }
        throw new IllegalArgumentException(
                field + " in doc #" + docId + "does not have any term position data stored");
    }

    // convenience method
    public static TokenStream getTokenStream(IndexReader reader, int docId, String field, Analyzer analyzer)
            throws IOException {
        Document doc = reader.document(docId);
        return getTokenStream(doc, field, analyzer);
    }

    public static TokenStream getTokenStream(Document doc, String field, Analyzer analyzer) {
        String contents = doc.get(field);
        if (contents == null) {
            throw new IllegalArgumentException(
                    "Field " + field + " in document is not stored and cannot be analyzed");
        }
        return getTokenStream(field, contents, analyzer);
    }

    // convenience method
    public static TokenStream getTokenStream(String field, String contents, Analyzer analyzer) {
        try {
            return analyzer.reusableTokenStream(field, new StringReader(contents));
        } catch (IOException ex) {
            throw new RuntimeException(ex);
        }
    }

}