edu.oregonstate.eecs.mcplan.abstraction.AbstractionBuilder.java Source code

Java tutorial

Introduction

Here is the source code for edu.oregonstate.eecs.mcplan.abstraction.AbstractionBuilder.java

Source

/* LICENSE
Copyright (c) 2013-2016, Jesse Hostetler (jessehostetler@gmail.com)
All rights reserved.
    
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
    
1. Redistributions of source code must retain the above copyright notice,
   this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
   this list of conditions and the following disclaimer in the documentation
   and/or other materials provided with the distribution.
    
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

package edu.oregonstate.eecs.mcplan.abstraction;

import java.io.PrintStream;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import weka.core.Attribute;
import weka.core.Instances;
import edu.oregonstate.eecs.mcplan.FactoredRepresentation;
import edu.oregonstate.eecs.mcplan.JointAction;
import edu.oregonstate.eecs.mcplan.VirtualConstructor;
import edu.oregonstate.eecs.mcplan.ml.GameTreeStateSimilarityDataset;
import edu.oregonstate.eecs.mcplan.search.ActionNode;
import edu.oregonstate.eecs.mcplan.search.GameTree;
import edu.oregonstate.eecs.mcplan.search.GameTreeFactory;
import edu.oregonstate.eecs.mcplan.search.MctsVisitor;
import edu.oregonstate.eecs.mcplan.search.SearchPolicy;
import edu.oregonstate.eecs.mcplan.search.StateNode;

public abstract class AbstractionBuilder<S, X extends FactoredRepresentation<S>, A extends VirtualConstructor<A>>
        extends SearchPolicy<S, X, A> {
    private final ArrayList<Attribute> attributes_;
    private final int player_;
    private final int min_samples_;
    private final int max_instances_;
    private final double false_positive_weight_;
    private final double q_tolerance_;
    private final boolean use_action_context_;

    private final HashMap<List<ActionNode<X, A>>, Instances> instances_ = new HashMap<List<ActionNode<X, A>>, Instances>();

    public AbstractionBuilder(final GameTreeFactory<S, X, A> factory, final MctsVisitor<S, X, A> visitor,
            final ArrayList<Attribute> attributes, final int player, final int min_samples, final int max_instances,
            final double false_positive_weight, final double q_tolerance, final boolean use_action_context,
            final PrintStream log_stream) {
        super(factory, visitor, log_stream);
        attributes_ = attributes;
        player_ = player;
        min_samples_ = min_samples;
        max_instances_ = max_instances;
        false_positive_weight_ = false_positive_weight;
        q_tolerance_ = q_tolerance;
        use_action_context_ = use_action_context;
    }

    public abstract double computeInstanceWeight(final StateNode<X, A> s1, final ActionNode<X, A> a1,
            final StateNode<X, A> s2, final ActionNode<X, A> a2, final int label, final double fp_weight);

    public abstract ActionNode<X, A> getAction(final StateNode<X, A> s);

    public HashMap<List<ActionNode<X, A>>, Instances> instances() {
        return instances_;
    }

    private void mergeInstances(final HashMap<List<ActionNode<X, A>>, Instances> novel) {
        for (final Map.Entry<List<ActionNode<X, A>>, Instances> e : novel.entrySet()) {
            Instances local = instances_.get(e.getKey());
            if (local == null) {
                local = new Instances("foobar", attributes_, 0); // TODO: "foobar"
                instances_.put(e.getKey(), local);
            }
            local.addAll(e.getValue());
        }
    }

    @Override
    protected JointAction<A> selectAction(final GameTree<X, A> tree) {
        // TODO: Building the dataset adds significant computation to
        // getAction(), although the 'control' value still applies only
        // to time spent constructing the tree.
        final AbstractionBuilder<S, X, A> outer = this;
        final GameTreeStateSimilarityDataset<X, A> dataset = new AbstractionAStar<X, A>(tree, attributes_, player_,
                false_positive_weight_, q_tolerance_) {
            @Override
            public double computeInstanceWeight(final StateNode<X, A> s1, final ActionNode<X, A> a1,
                    final StateNode<X, A> s2, final ActionNode<X, A> a2, final int label, final double fp_weight) {
                return outer.computeInstanceWeight(s1, a1, s2, a2, label, fp_weight);
            }

            @Override
            public ActionNode<X, A> getAction(final StateNode<X, A> s) {
                return outer.getAction(s);
            }
        };
        dataset.run();
        mergeInstances(dataset.getInstances());

        // TODO: It should be possible to get the backup rule from StateNode
        return getAction(tree.root()).a();
    }

    @Override
    public int hashCode() {
        return System.identityHashCode(this);
    }

    @Override
    public boolean equals(final Object that) {
        return this == that;
    }

}