edu.uci.ics.jung.graph.SparseGraph.java Source code

Java tutorial

Introduction

Here is the source code for edu.uci.ics.jung.graph.SparseGraph.java

Source

/*
 * Created on Apr 15, 2007
 *
 * Copyright (c) 2007, the JUNG Project and the Regents of the University 
 * of California
 * All rights reserved.
 *
 * This software is open-source under the BSD license; see either
 * "license.txt" or
 * http://jung.sourceforge.net/license.txt for a description.
 */
package edu.uci.ics.jung.graph;

import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;

import org.apache.commons.collections15.Factory;

import edu.uci.ics.jung.graph.util.EdgeType;
import edu.uci.ics.jung.graph.util.Pair;

/**
 * An implementation of <code>Graph</code> that is suitable for sparse graphs and
 * permits both directed and undirected edges.
 */
@SuppressWarnings("serial")
public class SparseGraph<V, E> extends AbstractGraph<V, E> implements Graph<V, E> {
    /**
     * Returns a {@code Factory} that creates an instance of this graph type.
     * @param <V> the vertex type for the graph factory
     * @param <E> the edge type for the graph factory
     */
    public static <V, E> Factory<Graph<V, E>> getFactory() {
        return new Factory<Graph<V, E>>() {
            public Graph<V, E> create() {
                return new SparseGraph<V, E>();
            }
        };
    }

    protected static final int INCOMING = 0;
    protected static final int OUTGOING = 1;
    protected static final int INCIDENT = 2;

    protected Map<V, Map<V, E>[]> vertex_maps; // Map of vertices to adjacency maps of vertices to {incoming, outgoing, incident} edges
    protected Map<E, Pair<V>> directed_edges; // Map of directed edges to incident vertex sets
    protected Map<E, Pair<V>> undirected_edges; // Map of undirected edges to incident vertex sets

    /**
     * Creates an instance.
     */
    public SparseGraph() {
        vertex_maps = new HashMap<V, Map<V, E>[]>();
        directed_edges = new HashMap<E, Pair<V>>();
        undirected_edges = new HashMap<E, Pair<V>>();
    }

    @Override
    public E findEdge(V v1, V v2) {
        if (!containsVertex(v1) || !containsVertex(v2))
            return null;
        E edge = vertex_maps.get(v1)[OUTGOING].get(v2);
        if (edge == null)
            edge = vertex_maps.get(v1)[INCIDENT].get(v2);
        return edge;
    }

    @Override
    public Collection<E> findEdgeSet(V v1, V v2) {
        if (!containsVertex(v1) || !containsVertex(v2))
            return null;
        Collection<E> edges = new ArrayList<E>(2);
        E e1 = vertex_maps.get(v1)[OUTGOING].get(v2);
        if (e1 != null)
            edges.add(e1);
        E e2 = vertex_maps.get(v1)[INCIDENT].get(v2);
        if (e1 != null)
            edges.add(e2);
        return edges;
    }

    @Override
    public boolean addEdge(E edge, Pair<? extends V> endpoints, EdgeType edgeType) {
        Pair<V> new_endpoints = getValidatedEndpoints(edge, endpoints);
        if (new_endpoints == null)
            return false;

        V v1 = new_endpoints.getFirst();
        V v2 = new_endpoints.getSecond();

        // undirected edges and directed edges are not considered to be parallel to each other,
        // so as long as anything that's returned by findEdge is not of the same type as
        // edge, we're fine
        E connection = findEdge(v1, v2);
        if (connection != null && getEdgeType(connection) == edgeType)
            return false;

        if (!containsVertex(v1))
            this.addVertex(v1);

        if (!containsVertex(v2))
            this.addVertex(v2);

        // map v1 to <v2, edge> and vice versa
        if (edgeType == EdgeType.DIRECTED) {
            vertex_maps.get(v1)[OUTGOING].put(v2, edge);
            vertex_maps.get(v2)[INCOMING].put(v1, edge);
            directed_edges.put(edge, new_endpoints);
        } else {
            vertex_maps.get(v1)[INCIDENT].put(v2, edge);
            vertex_maps.get(v2)[INCIDENT].put(v1, edge);
            undirected_edges.put(edge, new_endpoints);
        }

        return true;
    }

    public Collection<E> getInEdges(V vertex) {
        if (!containsVertex(vertex))
            return null;

        // combine directed inedges and undirected
        Collection<E> in = new HashSet<E>(vertex_maps.get(vertex)[INCOMING].values());
        in.addAll(vertex_maps.get(vertex)[INCIDENT].values());
        return Collections.unmodifiableCollection(in);
    }

    public Collection<E> getOutEdges(V vertex) {
        if (!containsVertex(vertex))
            return null;

        // combine directed outedges and undirected
        Collection<E> out = new HashSet<E>(vertex_maps.get(vertex)[OUTGOING].values());
        out.addAll(vertex_maps.get(vertex)[INCIDENT].values());
        return Collections.unmodifiableCollection(out);
    }

    public Collection<V> getPredecessors(V vertex) {
        if (!containsVertex(vertex))
            return null;

        // consider directed inedges and undirected
        Collection<V> preds = new HashSet<V>(vertex_maps.get(vertex)[INCOMING].keySet());
        preds.addAll(vertex_maps.get(vertex)[INCIDENT].keySet());
        return Collections.unmodifiableCollection(preds);
    }

    public Collection<V> getSuccessors(V vertex) {
        if (!containsVertex(vertex))
            return null;

        // consider directed outedges and undirected
        Collection<V> succs = new HashSet<V>(vertex_maps.get(vertex)[OUTGOING].keySet());
        succs.addAll(vertex_maps.get(vertex)[INCIDENT].keySet());
        return Collections.unmodifiableCollection(succs);
    }

    public Collection<E> getEdges(EdgeType edgeType) {
        if (edgeType == EdgeType.DIRECTED)
            return Collections.unmodifiableCollection(directed_edges.keySet());
        else if (edgeType == EdgeType.UNDIRECTED)
            return Collections.unmodifiableCollection(undirected_edges.keySet());
        else
            return null;
    }

    public Pair<V> getEndpoints(E edge) {
        Pair<V> endpoints;
        endpoints = directed_edges.get(edge);
        if (endpoints == null)
            return undirected_edges.get(edge);
        else
            return endpoints;
    }

    public EdgeType getEdgeType(E edge) {
        if (directed_edges.containsKey(edge))
            return EdgeType.DIRECTED;
        else if (undirected_edges.containsKey(edge))
            return EdgeType.UNDIRECTED;
        else
            return null;
    }

    public V getSource(E directed_edge) {
        if (getEdgeType(directed_edge) == EdgeType.DIRECTED)
            return directed_edges.get(directed_edge).getFirst();
        else
            return null;
    }

    public V getDest(E directed_edge) {
        if (getEdgeType(directed_edge) == EdgeType.DIRECTED)
            return directed_edges.get(directed_edge).getSecond();
        else
            return null;
    }

    public boolean isSource(V vertex, E edge) {
        if (!containsVertex(vertex) || !containsEdge(edge))
            return false;

        V source = getSource(edge);
        if (source != null)
            return source.equals(vertex);
        else
            return false;
    }

    public boolean isDest(V vertex, E edge) {
        if (!containsVertex(vertex) || !containsEdge(edge))
            return false;

        V dest = getDest(edge);
        if (dest != null)
            return dest.equals(vertex);
        else
            return false;
    }

    public Collection<E> getEdges() {
        Collection<E> edges = new ArrayList<E>(directed_edges.keySet());
        edges.addAll(undirected_edges.keySet());
        return Collections.unmodifiableCollection(edges);
    }

    public Collection<V> getVertices() {
        return Collections.unmodifiableCollection(vertex_maps.keySet());
    }

    public boolean containsVertex(V vertex) {
        return vertex_maps.containsKey(vertex);
    }

    public boolean containsEdge(E edge) {
        return directed_edges.containsKey(edge) || undirected_edges.containsKey(edge);
    }

    public int getEdgeCount() {
        return directed_edges.size() + undirected_edges.size();
    }

    public int getVertexCount() {
        return vertex_maps.size();
    }

    public Collection<V> getNeighbors(V vertex) {
        if (!containsVertex(vertex))
            return null;
        // consider directed edges and undirected edges
        Collection<V> neighbors = new HashSet<V>(vertex_maps.get(vertex)[INCOMING].keySet());
        neighbors.addAll(vertex_maps.get(vertex)[OUTGOING].keySet());
        neighbors.addAll(vertex_maps.get(vertex)[INCIDENT].keySet());
        return Collections.unmodifiableCollection(neighbors);
    }

    public Collection<E> getIncidentEdges(V vertex) {
        if (!containsVertex(vertex))
            return null;
        Collection<E> incident = new HashSet<E>(vertex_maps.get(vertex)[INCOMING].values());
        incident.addAll(vertex_maps.get(vertex)[OUTGOING].values());
        incident.addAll(vertex_maps.get(vertex)[INCIDENT].values());
        return Collections.unmodifiableCollection(incident);
    }

    @SuppressWarnings("unchecked")
    public boolean addVertex(V vertex) {
        if (vertex == null) {
            throw new IllegalArgumentException("vertex may not be null");
        }
        if (!containsVertex(vertex)) {
            vertex_maps.put(vertex,
                    new HashMap[] { new HashMap<V, E>(), new HashMap<V, E>(), new HashMap<V, E>() });
            return true;
        } else {
            return false;
        }
    }

    public boolean removeVertex(V vertex) {
        if (!containsVertex(vertex))
            return false;

        // copy to avoid concurrent modification in removeEdge
        Collection<E> incident = new ArrayList<E>(getIncidentEdges(vertex));

        for (E edge : incident)
            removeEdge(edge);

        vertex_maps.remove(vertex);

        return true;
    }

    public boolean removeEdge(E edge) {
        if (!containsEdge(edge))
            return false;

        Pair<V> endpoints = getEndpoints(edge);
        V v1 = endpoints.getFirst();
        V v2 = endpoints.getSecond();

        // remove edge from incident vertices' adjacency maps
        if (getEdgeType(edge) == EdgeType.DIRECTED) {
            vertex_maps.get(v1)[OUTGOING].remove(v2);
            vertex_maps.get(v2)[INCOMING].remove(v1);
            directed_edges.remove(edge);
        } else {
            vertex_maps.get(v1)[INCIDENT].remove(v2);
            vertex_maps.get(v2)[INCIDENT].remove(v1);
            undirected_edges.remove(edge);
        }

        return true;
    }

    public int getEdgeCount(EdgeType edge_type) {
        if (edge_type == EdgeType.DIRECTED)
            return directed_edges.size();
        if (edge_type == EdgeType.UNDIRECTED)
            return undirected_edges.size();
        return 0;
    }

    public EdgeType getDefaultEdgeType() {
        return EdgeType.UNDIRECTED;
    }
}