Java tutorial
/* * Cloud9: A MapReduce Library for Hadoop * * Licensed under the Apache License, Version 2.0 (the "License"); you * may not use this file except in compliance with the License. You may * obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or * implied. See the License for the specific language governing * permissions and limitations under the License. */ package edu.umd.cloud9.pagerank; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Writable; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapred.Partitioner; /** * Ranger partitioner. In the context of graph algorithms, ensures that * consecutive node ids are blocked together. * * @author jimmy * */ public class RangePartitioner<K, V> implements Partitioner<IntWritable, Writable> { private int mNodeCnt = 0; public RangePartitioner() { } public int getPartition(IntWritable key, Writable value, int numReduceTasks) { return (int) (((float) key.get() / (float) mNodeCnt) * numReduceTasks) % numReduceTasks; } public void configure(JobConf job) { mNodeCnt = job.getInt("NodeCount", 0); } }