Java tutorial
/* * Copyright (C) 2010 Grupo Integrado de Ingeniera * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ package es.udc.gii.common.eaf.log; import es.udc.gii.common.eaf.algorithm.EvolutionaryAlgorithm; import es.udc.gii.common.eaf.algorithm.population.Individual; import es.udc.gii.common.eaf.algorithm.productTrader.IndividualsProductTrader; import es.udc.gii.common.eaf.algorithm.productTrader.specification.BestIndividualSpecification; import es.udc.gii.common.eaf.util.ConfWarning; import java.util.ArrayList; import java.util.List; import java.util.Observable; import org.apache.commons.configuration.Configuration; /** * This log tool implements a log tool that record the number of generations performed and the * best individual after the replace stage of the algorithm. This log tool does not need any * kind of configuration, apart from the configuration need in the superclass. * * @author Grupo Integrado de Ingeniera (<a href="http://www.gii.udc.es">www.gii.udc.es</a>) * @since 1.0 */ public class BestEverIndividualLogTool extends LogTool { private List fes_prints = new ArrayList(); private int fes_index = 0; @Override public void configure(Configuration conf) { super.configure(conf); if (conf.containsKey("Fes_Prints")) { this.fes_prints = conf.getList("Fes_Prints"); } else { ConfWarning w = new ConfWarning("Fes_Prints", "Empty List"); w.warn(); } } @Override public void update(Observable o, Object arg) { EvolutionaryAlgorithm algorithm = (EvolutionaryAlgorithm) o; BestIndividualSpecification bestSpec = new BestIndividualSpecification(); Individual best; int algorithm_fes; super.update(o, arg); if (algorithm.getState() == EvolutionaryAlgorithm.REPLACE_STATE) { algorithm_fes = algorithm.getFEs(); if (this.fes_prints.size() > 0) { if (algorithm_fes >= Integer.parseInt((String) this.fes_prints.get(fes_index))) { best = algorithm.getBestEverIndividual(); super.getLog().println(algorithm.getGenerations() + " - " + best.toString()); } } else { best = algorithm.getBestEverIndividual(); String s = ""; s += algorithm.getGenerations() + " - "; for (int i = 0; i < best.getChromosomes().length; i++) { for (int j = 0; j < best.getChromosomeAt(i).length; j++) { s += best.getChromosomeAt(i)[j] + " "; } } s += " - " + best.getFitness(); super.getLog().println(s); } } } @Override public String getLogID() { return "besteverindividual"; } }