iocomms.subpos.NonLinearLeastSquaresSolver.java Source code

Java tutorial

Introduction

Here is the source code for iocomms.subpos.NonLinearLeastSquaresSolver.java

Source

package iocomms.subpos;

import org.apache.commons.math3.fitting.leastsquares.LeastSquaresFactory;
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresOptimizer;
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresOptimizer.Optimum;
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem;
import org.apache.commons.math3.linear.ArrayRealVector;
import org.apache.commons.math3.linear.DiagonalMatrix;

/**
 * Solves a Trilateration problem with an instance of a
 * {@link LeastSquaresOptimizer}
 * 
 * The MIT License (MIT)
 * Copyright (c) 2014 Scott Wiedemann
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 * 
 */
public class NonLinearLeastSquaresSolver {

    private final TrilaterationFunction function;
    private final LeastSquaresOptimizer leastSquaresOptimizer;

    protected final static int MAXNUMBEROFITERATIONS = 1000;

    public NonLinearLeastSquaresSolver(TrilaterationFunction function,
            LeastSquaresOptimizer leastSquaresOptimizer) {
        this.function = function;
        this.leastSquaresOptimizer = leastSquaresOptimizer;
    }

    public Optimum solve(double[] target, double[] weights, double[] initialPoint, boolean debugInfo) {
        if (debugInfo) {
            System.out.println("Max Number of Iterations : " + MAXNUMBEROFITERATIONS);
        }

        LeastSquaresProblem leastSquaresProblem = LeastSquaresFactory.create(
                // function to be optimized
                function,
                // target values at optimal point in least square equation
                // (x0+xi)^2 + (y0+yi)^2 + ri^2 = target[i]
                new ArrayRealVector(target, false), new ArrayRealVector(initialPoint, false),
                new DiagonalMatrix(weights), null, MAXNUMBEROFITERATIONS, MAXNUMBEROFITERATIONS);

        return leastSquaresOptimizer.optimize(leastSquaresProblem);
    }

    public Optimum solve(double[] target, double[] weights, double[] initialPoint) {
        return solve(target, weights, initialPoint, false);
    }

    public Optimum solve(boolean debugInfo) {
        int numberOfPositions = function.getPositions().length;
        int positionDimension = function.getPositions()[0].length;

        double[] initialPoint = new double[positionDimension];
        // initial point, use average of the vertices
        for (int i = 0; i < function.getPositions().length; i++) {
            double[] vertex = function.getPositions()[i];
            for (int j = 0; j < vertex.length; j++) {
                initialPoint[j] += vertex[j];
            }
        }
        for (int j = 0; j < initialPoint.length; j++) {
            initialPoint[j] /= numberOfPositions;
        }

        /*if (debugInfo) {
           StringBuilder output = new StringBuilder("initialPoint: ");
           for (int i = 0; i < initialPoint.length; i++) {
        output.append(initialPoint[i]).append(" ");
           }
           System.out.println(output.toString());
        }*/

        double[] target = new double[numberOfPositions];
        double[] distances = function.getDistances();
        double[] weights = new double[target.length];
        // Weights are inversely proportional to the the square of the distances I think
        for (int i = 0; i < target.length; i++) {
            target[i] = 0.0;
            // weights[i] = 1.0;
            weights[i] = (distances[i] * distances[i]);
        }

        return solve(target, weights, initialPoint);
    }

    public Optimum solve() {
        return solve(false);
    }
}