j48.ClassifierSplitModel.java Source code

Java tutorial

Introduction

Here is the source code for j48.ClassifierSplitModel.java

Source

/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    ClassifierSplitModel.java
 *    Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
 *
 */

package j48;

import weka.core.Instance;
import weka.core.Instances;
import weka.core.RevisionHandler;
import weka.core.Utils;

import java.io.Serializable;

/** 
 * Abstract class for classification models that can be used 
 * recursively to split the data.
 *
 * @author Eibe Frank (eibe@cs.waikato.ac.nz)
 * @version $Revision: 1.11 $
 */
public abstract class ClassifierSplitModel implements Cloneable, Serializable, RevisionHandler {

    /** for serialization */
    private static final long serialVersionUID = 4280730118393457457L;

    /** Distribution of class values. */
    protected Distribution m_distribution;

    /** Number of created subsets. */
    protected int m_numSubsets;

    /**
     * Allows to clone a model (shallow copy).
     */
    public Object clone() {

        Object clone = null;

        try {
            clone = super.clone();
        } catch (CloneNotSupportedException e) {
        }
        return clone;
    }

    /**
     * Builds the classifier split model for the given set of instances.
     *
     * @exception Exception if something goes wrong
     */
    public abstract void buildClassifier(Instances instances) throws Exception;

    /**
     * Checks if generated model is valid.
     */
    public final boolean checkModel() {

        if (m_numSubsets > 0)
            return true;
        else
            return false;
    }

    /**
     * Classifies a given instance.
     *
     * @exception Exception if something goes wrong
     */
    public final double classifyInstance(Instance instance) throws Exception {

        int theSubset;

        theSubset = whichSubset(instance);
        if (theSubset > -1)
            return (double) m_distribution.maxClass(theSubset);
        else
            return (double) m_distribution.maxClass();
    }

    /**
     * Gets class probability for instance.
     *
     * @exception Exception if something goes wrong
     */
    public double classProb(int classIndex, Instance instance, int theSubset) throws Exception {

        if (theSubset > -1) {
            return m_distribution.prob(classIndex, theSubset);
        } else {
            double[] weights = weights(instance);
            if (weights == null) {
                return m_distribution.prob(classIndex);
            } else {
                double prob = 0;
                for (int i = 0; i < weights.length; i++) {
                    prob += weights[i] * m_distribution.prob(classIndex, i);
                }
                return prob;
            }
        }
    }

    /**
     * Gets class probability for instance.
     *
     * @exception Exception if something goes wrong
     */
    public double classProbLaplace(int classIndex, Instance instance, int theSubset) throws Exception {

        if (theSubset > -1) {
            return m_distribution.laplaceProb(classIndex, theSubset);
        } else {
            double[] weights = weights(instance);
            if (weights == null) {
                return m_distribution.laplaceProb(classIndex);
            } else {
                double prob = 0;
                for (int i = 0; i < weights.length; i++) {
                    prob += weights[i] * m_distribution.laplaceProb(classIndex, i);
                }
                return prob;
            }
        }
    }

    /**
     * Returns coding costs of model. Returns 0 if not overwritten.
     */
    public double codingCost() {

        return 0;
    }

    /**
     * Returns the distribution of class values induced by the model.
     */
    public final Distribution distribution() {

        return m_distribution;
    }

    /**
     * Prints left side of condition satisfied by instances.
     *
     * @param data the data.
     */
    public abstract String leftSide(Instances data);

    /**
     * Prints left side of condition satisfied by instances in subset index.
     */
    public abstract String rightSide(int index, Instances data);

    /**
     * Prints label for subset index of instances (eg class).
     *
     * @exception Exception if something goes wrong
     */
    public final String dumpLabel(int index, Instances data) throws Exception {

        StringBuffer text;

        text = new StringBuffer();
        text.append(((Instances) data).classAttribute().value(m_distribution.maxClass(index)));
        text.append(" (" + Utils.roundDouble(m_distribution.perBag(index), 2));
        if (Utils.gr(m_distribution.numIncorrect(index), 0))
            text.append("/" + Utils.roundDouble(m_distribution.numIncorrect(index), 2));
        text.append(")");

        return text.toString();
    }

    public final String sourceClass(int index, Instances data) throws Exception {

        System.err.println("sourceClass");
        return (new StringBuffer(m_distribution.maxClass(index))).toString();
    }

    public abstract String sourceExpression(int index, Instances data);

    /**
     * Prints the split model.
     *
     * @exception Exception if something goes wrong
     */
    public final String dumpModel(Instances data) throws Exception {

        StringBuffer text;
        int i;

        text = new StringBuffer();
        for (i = 0; i < m_numSubsets; i++) {
            text.append(leftSide(data) + rightSide(i, data) + ": ");
            text.append(dumpLabel(i, data) + "\n");
        }
        return text.toString();
    }

    /**
     * Returns the number of created subsets for the split.
     */
    public final int numSubsets() {

        return m_numSubsets;
    }

    /**
     * Sets distribution associated with model.
     */
    public void resetDistribution(Instances data) throws Exception {

        m_distribution = new Distribution(data, this);
    }

    /**
     * Splits the given set of instances into subsets.
     *
     * @exception Exception if something goes wrong
     */
    public final Instances[] split(Instances data) throws Exception {

        Instances[] instances = new Instances[m_numSubsets];
        double[] weights;
        double newWeight;
        Instance instance;
        int subset, i, j;

        for (j = 0; j < m_numSubsets; j++)
            instances[j] = new Instances((Instances) data, data.numInstances());
        for (i = 0; i < data.numInstances(); i++) {
            instance = ((Instances) data).instance(i);
            weights = weights(instance);
            subset = whichSubset(instance);
            if (subset > -1)
                instances[subset].add(instance);
            else
                for (j = 0; j < m_numSubsets; j++)
                    if (Utils.gr(weights[j], 0)) {
                        newWeight = weights[j] * instance.weight();
                        instances[j].add(instance);
                        instances[j].lastInstance().setWeight(newWeight);
                    }
        }
        for (j = 0; j < m_numSubsets; j++)
            instances[j].compactify();

        return instances;
    }

    /**
     * Returns weights if instance is assigned to more than one subset.
     * Returns null if instance is only assigned to one subset.
     */
    public abstract double[] weights(Instance instance);

    /**
     * Returns index of subset instance is assigned to.
     * Returns -1 if instance is assigned to more than one subset.
     *
     * @exception Exception if something goes wrong
     */
    public abstract int whichSubset(Instance instance) throws Exception;
}