moa.classifiers.AbstractClassifier.java Source code

Java tutorial

Introduction

Here is the source code for moa.classifiers.AbstractClassifier.java

Source

/*
 *    AbstractClassifier.java
 *    Copyright (C) 2007 University of Waikato, Hamilton, New Zealand
 *    @author Richard Kirkby (rkirkby@cs.waikato.ac.nz)
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 3 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program. If not, see <http://www.gnu.org/licenses/>.
 *    
 */
package moa.classifiers;

import java.util.Arrays;
import java.util.LinkedList;
import java.util.List;
import java.util.Random;
import moa.core.InstancesHeader;
import moa.core.Measurement;
import moa.core.ObjectRepository;
import moa.core.StringUtils;
import moa.gui.AWTRenderer;
import moa.options.AbstractOptionHandler;
import moa.options.IntOption;
import moa.tasks.TaskMonitor;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Utils;

/**
 * Abstract Classifier. All learners for nominal prediction in
 * MOA extend this class.
 *
 * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz)
 * @version $Revision: 7 $
 */
public abstract class AbstractClassifier extends AbstractOptionHandler implements Classifier {

    @Override
    public String getPurposeString() {
        return "MOA Classifier: " + getClass().getCanonicalName();
    }

    /** Header of the instances of the data stream */
    protected InstancesHeader modelContext;

    /** Sum of the weights of the instances trained by this model */
    protected double trainingWeightSeenByModel = 0.0;

    /** Random seed used in randomizable learners */
    protected int randomSeed = 1;

    /** Option for randomizable learners to change the random seed */
    public IntOption randomSeedOption;

    /** Random Generator used in randomizable learners  */
    public Random classifierRandom;

    /**
     * Creates an classifier and setups the random seed option
     * if the classifier is randomizable.
     */
    public AbstractClassifier() {
        if (isRandomizable()) {
            this.randomSeedOption = new IntOption("randomSeed", 'r', "Seed for random behaviour of the classifier.",
                    1);
        }
    }

    @Override
    public void prepareForUseImpl(TaskMonitor monitor, ObjectRepository repository) {
        if (this.randomSeedOption != null) {
            this.randomSeed = this.randomSeedOption.getValue();
        }
        if (!trainingHasStarted()) {
            resetLearning();
        }
    }

    @Override
    public void setModelContext(InstancesHeader ih) {
        if ((ih != null) && (ih.classIndex() < 0)) {
            throw new IllegalArgumentException("Context for a classifier must include a class to learn");
        }
        if (trainingHasStarted() && (this.modelContext != null)
                && ((ih == null) || !contextIsCompatible(this.modelContext, ih))) {
            throw new IllegalArgumentException("New context is not compatible with existing model");
        }
        this.modelContext = ih;
    }

    @Override
    public InstancesHeader getModelContext() {
        return this.modelContext;
    }

    @Override
    public void setRandomSeed(int s) {
        this.randomSeed = s;
        if (this.randomSeedOption != null) {
            // keep option consistent
            this.randomSeedOption.setValue(s);
        }
    }

    @Override
    public boolean trainingHasStarted() {
        return this.trainingWeightSeenByModel > 0.0;
    }

    @Override
    public double trainingWeightSeenByModel() {
        return this.trainingWeightSeenByModel;
    }

    @Override
    public void resetLearning() {
        this.trainingWeightSeenByModel = 0.0;
        if (isRandomizable()) {
            this.classifierRandom = new Random(this.randomSeed);
        }
        resetLearningImpl();
    }

    @Override
    public void trainOnInstance(Instance inst) {
        boolean isTraining = (inst.weight() > 0.0);
        if (this instanceof SemiSupervisedLearner == false && inst.classIsMissing() == true) {
            isTraining = false;
        }
        if (isTraining) {
            this.trainingWeightSeenByModel += inst.weight();
            trainOnInstanceImpl(inst);
        }
    }

    @Override
    public Measurement[] getModelMeasurements() {
        List<Measurement> measurementList = new LinkedList<Measurement>();
        measurementList.add(new Measurement("model training instances", trainingWeightSeenByModel()));
        measurementList.add(new Measurement("model serialized size (bytes)", measureByteSize()));
        Measurement[] modelMeasurements = getModelMeasurementsImpl();
        if (modelMeasurements != null) {
            measurementList.addAll(Arrays.asList(modelMeasurements));
        }
        // add average of sub-model measurements
        Classifier[] subModels = getSubClassifiers();
        if ((subModels != null) && (subModels.length > 0)) {
            List<Measurement[]> subMeasurements = new LinkedList<Measurement[]>();
            for (Classifier subModel : subModels) {
                if (subModel != null) {
                    subMeasurements.add(subModel.getModelMeasurements());
                }
            }
            Measurement[] avgMeasurements = Measurement
                    .averageMeasurements(subMeasurements.toArray(new Measurement[subMeasurements.size()][]));
            measurementList.addAll(Arrays.asList(avgMeasurements));
        }
        return measurementList.toArray(new Measurement[measurementList.size()]);
    }

    @Override
    public void getDescription(StringBuilder out, int indent) {
        StringUtils.appendIndented(out, indent, "Model type: ");
        out.append(this.getClass().getName());
        StringUtils.appendNewline(out);
        Measurement.getMeasurementsDescription(getModelMeasurements(), out, indent);
        StringUtils.appendNewlineIndented(out, indent, "Model description:");
        StringUtils.appendNewline(out);
        if (trainingHasStarted()) {
            getModelDescription(out, indent);
        } else {
            StringUtils.appendIndented(out, indent, "Model has not been trained.");
        }
    }

    @Override
    public Classifier[] getSubClassifiers() {
        return null;
    }

    @Override
    public Classifier copy() {
        return (Classifier) super.copy();
    }

    @Override
    public boolean correctlyClassifies(Instance inst) {
        return Utils.maxIndex(getVotesForInstance(inst)) == (int) inst.classValue();
    }

    /**
     * Gets the name of the attribute of the class from the header.
     *
     * @return the string with name of the attribute of the class
     */
    public String getClassNameString() {
        return InstancesHeader.getClassNameString(this.modelContext);
    }

    /**
     * Gets the name of a label of the class from the header.
     *
     * @param classLabelIndex the label index
     * @return the name of the label of the class
     */
    public String getClassLabelString(int classLabelIndex) {
        return InstancesHeader.getClassLabelString(this.modelContext, classLabelIndex);
    }

    /**
     * Gets the name of an attribute from the header.
     *
     * @param attIndex the attribute index
     * @return the name of the attribute
     */
    public String getAttributeNameString(int attIndex) {
        return InstancesHeader.getAttributeNameString(this.modelContext, attIndex);
    }

    /**
     * Gets the name of a value of an attribute from the header.
     *
     * @param attIndex the attribute index
     * @param valIndex the value of the attribute
     * @return the name of the value of the attribute
     */
    public String getNominalValueString(int attIndex, int valIndex) {
        return InstancesHeader.getNominalValueString(this.modelContext, attIndex, valIndex);
    }

    /**
     * Returns if two contexts or headers of instances are compatible.<br><br>
     *
     * Two contexts are compatible if they follow the following rules:<br>
     * Rule 1: num classes can increase but never decrease<br>
     * Rule 2: num attributes can increase but never decrease<br>
     * Rule 3: num nominal attribute values can increase but never decrease<br>
     * Rule 4: attribute types must stay in the same order (although class
     * can move; is always skipped over)<br><br>
     *
     * Attribute names are free to change, but should always still represent
     * the original attributes.
     *
     * @param originalContext the first context to compare
     * @param newContext the second context to compare
     * @return true if the two contexts are compatible.
     */
    public static boolean contextIsCompatible(InstancesHeader originalContext, InstancesHeader newContext) {

        if (newContext.numClasses() < originalContext.numClasses()) {
            return false; // rule 1
        }
        if (newContext.numAttributes() < originalContext.numAttributes()) {
            return false; // rule 2
        }
        int oPos = 0;
        int nPos = 0;
        while (oPos < originalContext.numAttributes()) {
            if (oPos == originalContext.classIndex()) {
                oPos++;
                if (!(oPos < originalContext.numAttributes())) {
                    break;
                }
            }
            if (nPos == newContext.classIndex()) {
                nPos++;
            }
            if (originalContext.attribute(oPos).isNominal()) {
                if (!newContext.attribute(nPos).isNominal()) {
                    return false; // rule 4
                }
                if (newContext.attribute(nPos).numValues() < originalContext.attribute(oPos).numValues()) {
                    return false; // rule 3
                }
            } else {
                assert (originalContext.attribute(oPos).isNumeric());
                if (!newContext.attribute(nPos).isNumeric()) {
                    return false; // rule 4
                }
            }
            oPos++;
            nPos++;
        }
        return true; // all checks clear
    }

    /**
     * Returns the AWT Renderer
     *
     * @return the AWT Renderer
     */
    @Override
    public AWTRenderer getAWTRenderer() {
        // TODO should return a default renderer here
        // - or should null be interpreted as the default?
        return null;
    }

    /**
     * Resets this classifier. It must be similar to
     * starting a new classifier from scratch. <br><br>
     * 
     * The reason for ...Impl methods: ease programmer burden by not requiring 
     * them to remember calls to super in overridden methods. 
     * Note that this will produce compiler errors if not overridden.
     */
    public abstract void resetLearningImpl();

    /**
     * Trains this classifier incrementally using the given instance.<br><br>
     * 
     * The reason for ...Impl methods: ease programmer burden by not requiring 
     * them to remember calls to super in overridden methods. 
     * Note that this will produce compiler errors if not overridden.
     *
     * @param inst the instance to be used for training
     */
    public abstract void trainOnInstanceImpl(Instance inst);

    /**
     * Gets the current measurements of this classifier.<br><br>
     * 
     * The reason for ...Impl methods: ease programmer burden by not requiring 
     * them to remember calls to super in overridden methods. 
     * Note that this will produce compiler errors if not overridden.
     *
     * @return an array of measurements to be used in evaluation tasks
     */
    protected abstract Measurement[] getModelMeasurementsImpl();

    /**
     * Returns a string representation of the model.
     *
     * @param out   the stringbuilder to add the description
     * @param indent   the number of characters to indent
     */
    public abstract void getModelDescription(StringBuilder out, int indent);

    /**
     * Gets the index of the attribute in the instance,
     * given the index of the attribute in the learner.
     *
     * @param index the index of the attribute in the learner
     * @param inst the instance
     * @return the index in the instance
     */
    protected static int modelAttIndexToInstanceAttIndex(int index, Instance inst) {
        return inst.classIndex() > index ? index : index + 1;
    }

    /**
     * Gets the index of the attribute in a set of instances,
     * given the index of the attribute in the learner.
     * 
     * @param index the index of the attribute in the learner
     * @param insts the instances
     * @return the index of the attribute in the instances
     */
    protected static int modelAttIndexToInstanceAttIndex(int index, Instances insts) {
        return insts.classIndex() > index ? index : index + 1;
    }
}