Java tutorial
/* * FadingTargetMean.java * Copyright (C) 2014 University of Porto, Portugal * @author J. Duarte, A. Bifet, J. Gama * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * */ package moa.classifiers.rules.functions; import moa.options.FloatOption; import weka.core.Instance; public class FadingTargetMean extends TargetMean { /** * */ private static final long serialVersionUID = -1383391769242905972L; public FloatOption fadingFactorOption = new FloatOption("fadingFactor", 'f', "Fading factor for the FadingTargetMean accumulated error", 0.99, 0, 1); private double nD; private double fadingFactor; @Override public void trainOnInstanceImpl(Instance inst) { updateAccumulatedError(inst); nD = 1 + fadingFactor * nD; sum = inst.classValue() + fadingFactor * sum; } @Override public void resetLearningImpl() { super.resetLearningImpl(); this.fadingFactor = fadingFactorOption.getValue(); } @Override public double[] getVotesForInstance(Instance inst) { double[] currentMean = new double[1]; if (nD > 0) currentMean[0] = sum / nD; else currentMean[0] = 0; return currentMean; } }