Java tutorial
/* * TargetMean.java * Copyright (C) 2014 University of Porto, Portugal * @author J. Duarte, A. Bifet, J. Gama * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * */ package moa.classifiers.rules.functions; /** * TargetMean - Returns the mean of the target variable of the training instances * * @author Joo Duarte * * */ import weka.core.Instance; import moa.classifiers.AbstractClassifier; import moa.classifiers.Regressor; import moa.core.Measurement; import moa.core.StringUtils; import moa.options.FloatOption; public class TargetMean extends AbstractClassifier implements Regressor { /** * */ protected long n; protected double sum; protected double errorSum; protected double nError; private double fadingErrorFactor; private static final long serialVersionUID = 7152547322803559115L; public FloatOption fadingErrorFactorOption = new FloatOption("fadingErrorFactor", 'e', "Fading error factor for the TargetMean accumulated error", 0.99, 0, 1); @Override public boolean isRandomizable() { return false; } @Override public double[] getVotesForInstance(Instance inst) { double[] currentMean = new double[1]; if (n > 0) currentMean[0] = sum / n; else currentMean[0] = 0; return currentMean; } @Override public void resetLearningImpl() { sum = 0; n = 0; errorSum = Double.MAX_VALUE; nError = 0; } @Override public void trainOnInstanceImpl(Instance inst) { updateAccumulatedError(inst); ++this.n; this.sum += inst.classValue(); } protected void updateAccumulatedError(Instance inst) { double mean = 0; nError = 1 + fadingErrorFactor * nError; if (n > 0) mean = sum / n; errorSum = Math.abs(inst.classValue() - mean) + fadingErrorFactor * errorSum; } @Override protected Measurement[] getModelMeasurementsImpl() { return null; } @Override public void getModelDescription(StringBuilder out, int indent) { StringUtils.appendIndented(out, indent, "Current Mean: " + this.sum / this.n); StringUtils.appendNewline(out); } /* JD * Resets the learner but initializes with a starting point * */ public void reset(double currentMean, long numberOfInstances) { this.sum = currentMean * numberOfInstances; this.n = numberOfInstances; this.resetError(); } /* JD * Resets the learner but initializes with a starting point * */ public double getCurrentError() { if (this.nError > 0) return this.errorSum / this.nError; else return Double.MAX_VALUE; } public TargetMean(TargetMean t) { super(); this.n = t.n; this.sum = t.sum; this.errorSum = t.errorSum; this.nError = t.nError; this.fadingErrorFactor = t.fadingErrorFactor; this.fadingErrorFactorOption = t.fadingErrorFactorOption; } public TargetMean() { super(); fadingErrorFactor = fadingErrorFactorOption.getValue(); } public void resetError() { this.errorSum = 0; this.nError = 0; } }