moa.clusterers.clustream.Clustream.java Source code

Java tutorial

Introduction

Here is the source code for moa.clusterers.clustream.Clustream.java

Source

/*
 *    Clustream.java
 *    Copyright (C) 2010 RWTH Aachen University, Germany
 *    @author Jansen (moa@cs.rwth-aachen.de)
 *
 *    Licensed under the Apache License, Version 2.0 (the "License");
 *    you may not use this file except in compliance with the License.
 *    You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 *    Unless required by applicable law or agreed to in writing, software
 *    distributed under the License is distributed on an "AS IS" BASIS,
 *    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *    See the License for the specific language governing permissions and
 *    limitations under the License.
 *    
 *    
 */

package moa.clusterers.clustream;

import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
import java.util.Random;
import moa.cluster.Cluster;
import moa.cluster.Clustering;
import moa.cluster.SphereCluster;
import moa.clusterers.AbstractClusterer;
import moa.core.Measurement;
import moa.options.IntOption;
import weka.core.DenseInstance;
import weka.core.Instance;

/** Citation: CluStream: Charu C. Aggarwal, Jiawei Han, Jianyong Wang, Philip S. Yu:
 * A Framework for Clustering Evolving Data Streams. VLDB 2003: 81-92
 */
public class Clustream extends AbstractClusterer {

    private static final long serialVersionUID = 1L;

    public IntOption timeWindowOption = new IntOption("horizon", 'h', "Rang of the window.", 1000);

    public IntOption maxNumKernelsOption = new IntOption("maxNumKernels", 'k',
            "Maximum number of micro kernels to use.", 100);

    public IntOption kernelRadiFactorOption = new IntOption("kernelRadiFactor", 't',
            "Multiplier for the kernel radius", 2);

    private int timeWindow;
    private long timestamp = -1;
    private ClustreamKernel[] kernels;
    private boolean initialized;
    private List<ClustreamKernel> buffer; // Buffer for initialization with kNN
    private int bufferSize;
    private double t;
    private int m;

    public Clustream() {
    }

    @Override
    public void resetLearningImpl() {
        this.kernels = new ClustreamKernel[maxNumKernelsOption.getValue()];
        this.timeWindow = timeWindowOption.getValue();
        this.initialized = false;
        this.buffer = new LinkedList<ClustreamKernel>();
        this.bufferSize = maxNumKernelsOption.getValue();
        t = kernelRadiFactorOption.getValue();
        m = maxNumKernelsOption.getValue();
    }

    @Override
    public void trainOnInstanceImpl(Instance instance) {
        int dim = instance.numValues();
        timestamp++;
        // 0. Initialize
        if (!initialized) {
            if (buffer.size() < bufferSize) {
                buffer.add(new ClustreamKernel(instance, dim, timestamp, t, m));
                return;
            }

            int k = kernels.length;
            //System.err.println("k="+k+" bufferSize="+bufferSize);
            assert (k <= bufferSize);

            ClustreamKernel[] centers = new ClustreamKernel[k];
            for (int i = 0; i < k; i++) {
                centers[i] = buffer.get(i); // TODO: make random!
            }
            Clustering kmeans_clustering = kMeans(k, centers, buffer);
            //         Clustering kmeans_clustering = kMeans(k, buffer);

            for (int i = 0; i < kmeans_clustering.size(); i++) {
                kernels[i] = new ClustreamKernel(new DenseInstance(1.0, centers[i].getCenter()), dim, timestamp, t,
                        m);
            }

            buffer.clear();
            initialized = true;
            return;
        }

        // 1. Determine closest kernel
        ClustreamKernel closestKernel = null;
        double minDistance = Double.MAX_VALUE;
        for (int i = 0; i < kernels.length; i++) {
            //System.out.println(i+" "+kernels[i].getWeight()+" "+kernels[i].getDeviation());
            double distance = distance(instance.toDoubleArray(), kernels[i].getCenter());
            if (distance < minDistance) {
                closestKernel = kernels[i];
                minDistance = distance;
            }
        }

        // 2. Check whether instance fits into closestKernel
        double radius = 0.0;
        if (closestKernel.getWeight() == 1) {
            // Special case: estimate radius by determining the distance to the
            // next closest cluster
            radius = Double.MAX_VALUE;
            double[] center = closestKernel.getCenter();
            for (int i = 0; i < kernels.length; i++) {
                if (kernels[i] == closestKernel) {
                    continue;
                }

                double distance = distance(kernels[i].getCenter(), center);
                radius = Math.min(distance, radius);
            }
        } else {
            radius = closestKernel.getRadius();
        }

        if (minDistance < radius) {
            // Date fits, put into kernel and be happy
            closestKernel.insert(instance, timestamp);
            return;
        }

        // 3. Date does not fit, we need to free
        // some space to insert a new kernel
        long threshold = timestamp - timeWindow; // Kernels before this can be forgotten

        // 3.1 Try to forget old kernels
        for (int i = 0; i < kernels.length; i++) {
            if (kernels[i].getRelevanceStamp() < threshold) {
                kernels[i] = new ClustreamKernel(instance, dim, timestamp, t, m);
                return;
            }
        }

        // 3.2 Merge closest two kernels
        int closestA = 0;
        int closestB = 0;
        minDistance = Double.MAX_VALUE;
        for (int i = 0; i < kernels.length; i++) {
            double[] centerA = kernels[i].getCenter();
            for (int j = i + 1; j < kernels.length; j++) {
                double dist = distance(centerA, kernels[j].getCenter());
                if (dist < minDistance) {
                    minDistance = dist;
                    closestA = i;
                    closestB = j;
                }
            }
        }
        assert (closestA != closestB);

        kernels[closestA].add(kernels[closestB]);
        kernels[closestB] = new ClustreamKernel(instance, dim, timestamp, t, m);
    }

    @Override
    public Clustering getMicroClusteringResult() {
        if (!initialized) {
            return new Clustering(new Cluster[0]);
        }

        ClustreamKernel[] res = new ClustreamKernel[kernels.length];
        for (int i = 0; i < res.length; i++) {
            res[i] = new ClustreamKernel(kernels[i], t, m);
        }

        return new Clustering(res);
    }

    @Override
    public boolean implementsMicroClusterer() {
        return true;
    }

    @Override
    public Clustering getClusteringResult() {
        return null;
    }

    public String getName() {
        return "Clustream " + timeWindow;
    }

    private static double distance(double[] pointA, double[] pointB) {
        double distance = 0.0;
        for (int i = 0; i < pointA.length; i++) {
            double d = pointA[i] - pointB[i];
            distance += d * d;
        }
        return Math.sqrt(distance);
    }

    //wrapper... we need to rewrite kmeans to points, not clusters, doesnt make sense anymore
    //    public static Clustering kMeans( int k, ArrayList<Instance> points, int dim ) {
    //        ArrayList<ClustreamKernel> cl = new ArrayList<ClustreamKernel>();
    //        for(Instance inst : points){
    //            cl.add(new ClustreamKernel(inst, dim , 0, 0, 0));
    //        }
    //        Clustering clustering = kMeans(k, cl);
    //        return clustering;
    //    }

    public static Clustering kMeans(int k, List<? extends Cluster> data) {
        Random random = new Random(0);
        Cluster[] centers = new Cluster[k];
        for (int i = 0; i < centers.length; i++) {
            int rid = random.nextInt(k);
            centers[i] = new SphereCluster(data.get(rid).getCenter(), 0);
        }
        Clustering clustering = kMeans(k, centers, data);
        return clustering;
    }

    public static Clustering kMeans(int k, Cluster[] centers, List<? extends Cluster> data) {
        assert (centers.length == k);
        assert (k > 0);

        int dimensions = centers[0].getCenter().length;

        ArrayList<ArrayList<Cluster>> clustering = new ArrayList<ArrayList<Cluster>>();
        for (int i = 0; i < k; i++) {
            clustering.add(new ArrayList<Cluster>());
        }

        int repetitions = 100;
        while (repetitions-- >= 0) {
            // Assign points to clusters
            for (Cluster point : data) {
                double minDistance = distance(point.getCenter(), centers[0].getCenter());
                int closestCluster = 0;
                for (int i = 1; i < k; i++) {
                    double distance = distance(point.getCenter(), centers[i].getCenter());
                    if (distance < minDistance) {
                        closestCluster = i;
                        minDistance = distance;
                    }
                }

                clustering.get(closestCluster).add(point);
            }

            // Calculate new centers and clear clustering lists
            SphereCluster[] newCenters = new SphereCluster[centers.length];
            for (int i = 0; i < k; i++) {
                newCenters[i] = calculateCenter(clustering.get(i), dimensions);
                clustering.get(i).clear();
            }
            centers = newCenters;
        }

        return new Clustering(centers);
    }

    private static SphereCluster calculateCenter(ArrayList<Cluster> cluster, int dimensions) {
        double[] res = new double[dimensions];
        for (int i = 0; i < res.length; i++) {
            res[i] = 0.0;
        }

        if (cluster.size() == 0) {
            return new SphereCluster(res, 0.0);
        }

        for (Cluster point : cluster) {
            double[] center = point.getCenter();
            for (int i = 0; i < res.length; i++) {
                res[i] += center[i];
            }
        }

        // Normalize
        for (int i = 0; i < res.length; i++) {
            res[i] /= cluster.size();
        }

        // Calculate radius
        double radius = 0.0;
        for (Cluster point : cluster) {
            double dist = distance(res, point.getCenter());
            if (dist > radius) {
                radius = dist;
            }
        }
        SphereCluster sc = new SphereCluster(res, radius);
        sc.setWeight(cluster.size());
        return sc;
    }

    @Override
    protected Measurement[] getModelMeasurementsImpl() {
        throw new UnsupportedOperationException("Not supported yet.");
    }

    @Override
    public void getModelDescription(StringBuilder out, int indent) {
        throw new UnsupportedOperationException("Not supported yet.");
    }

    public boolean isRandomizable() {
        return false;
    }

    public double[] getVotesForInstance(Instance inst) {
        throw new UnsupportedOperationException("Not supported yet.");
    }

}