mulan.classifier.transformation.LabelPowerset.java Source code

Java tutorial

Introduction

Here is the source code for mulan.classifier.transformation.LabelPowerset.java

Source

/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    LabelPowerset.java
 *    Copyright (C) 2009-2010 Aristotle University of Thessaloniki, Thessaloniki, Greece
 */
package mulan.classifier.transformation;

import java.util.Arrays;
import java.util.Random;
import java.util.logging.Level;
import java.util.logging.Logger;

import mulan.classifier.MultiLabelOutput;
import mulan.data.LabelSet;
import mulan.core.Util;
import mulan.data.MultiLabelInstances;
import mulan.transformations.LabelPowersetTransformation;
import weka.classifiers.Classifier;
import weka.core.Instance;
import weka.core.Instances;

/**
 * Class that implements a label powerset classifier <p>
 *
 * @author Grigorios Tsoumakas 
 * @author Robert Friberg
 * @version $Revision: 0.05 $ 
 */
public class LabelPowerset extends TransformationBasedMultiLabelLearner {

    /**
     * The confidence values for each label are calculated in the following ways
     * 0: Confidence 0 1/0 for all labels, (1 if label true, 0 if label is false)
     * 1: Confidence of x/(1-x) for all labels, where x is the probability of the winning class (x if label true, (1-x) if label is false)
     * 2: Confidence calculated based on the distribution of probabilities 
     *    obtained from the base classifier, as introduced by the PPT algorithm
     */
    private int confidenceCalculationMethod = 1;
    /**
     * Whether the method introduced by the PPT algorithm will be used to
     * actually get the 1/0 output bipartition based on the confidences
     * (requires a threshold)
     */
    protected boolean makePredictionsBasedOnConfidences = false;
    /**
     * Threshold used for deciding the 1/0 output value of each label based on
     * the corresponding confidences as calculated by the method introduced in
     * the PPT algorithm
     */
    protected double threshold = 0.5;
    /** The object that performs the data transformation */
    protected LabelPowersetTransformation transformation;
    /**
     * Random number generator for randomly solving tied predictions
     */
    protected Random Rand;

    /**
     * Conststructor that initializes the learner with a base classifier
     * 
     * @param classifier the base single-label classification algorithm
     */
    public LabelPowerset(Classifier classifier) {
        super(classifier);
        Rand = new Random(1);
    }

    /**
     * Sets a threshold for obtaining the bipartition
     *
     * @param value the threshold's value
     */
    public void setMakePredictionsBasedOnConfidences(boolean value) {
        makePredictionsBasedOnConfidences = value;
    }

    /**
     * Setting a seed for random selection in case of ties during prediction
     * 
     * @param s the seed
     */
    public void setSeed(int s) {
        Rand = new Random(s);
    }

    /**
     * The threshold for obtaining the bipartition from probabilities
     * 
     * @param t
     */
    public void setThreshold(double t) {
        threshold = t;
    }

    /**
     * Sets the method of calculating probabilities for each label
     * 
     * @param method
     */
    public void setConfidenceCalculationMethod(int method) {
        if (method == 0 || method == 1 || method == 2) {
            confidenceCalculationMethod = method;
        }
    }

    protected void buildInternal(MultiLabelInstances mlData) throws Exception {
        Instances transformedData;
        transformation = new LabelPowersetTransformation();
        debug("Transforming the training set.");
        transformedData = transformation.transformInstances(mlData);
        //================================================================
        //    System.out.println("Transformed training set: \n" + transformedData.toString());

        // check for unary class
        //   System.out.println("Building single-label classifier.");
        //==============================================================
        if (transformedData.attribute(transformedData.numAttributes() - 1).numValues() > 1) {
            baseClassifier.buildClassifier(transformedData);
        }
    }

    protected MultiLabelOutput makePredictionInternal(Instance instance) throws Exception {
        boolean bipartition[] = null;
        double confidences[] = null;

        // check for unary class
        if (transformation.getTransformedFormat().classAttribute().numValues() == 1) {
            String strClass = transformation.getTransformedFormat().classAttribute().value(0);
            LabelSet labelSet = null;
            try {
                labelSet = LabelSet.fromBitString(strClass);
            } catch (Exception ex) {
                Logger.getLogger(LabelPowerset.class.getName()).log(Level.SEVERE, null, ex);
            }
            bipartition = labelSet.toBooleanArray();
            confidences = labelSet.toDoubleArray();
        } else {
            double[] distribution = null;
            try {
                debug("old instance:" + instance.toString());
                Instance transformedInstance;
                transformedInstance = transformation.transformInstance(instance, labelIndices);
                distribution = baseClassifier.distributionForInstance(transformedInstance);
                //debug(Arrays.toString(distribution));
            } catch (Exception ex) {
                Logger.getLogger(LabelPowerset.class.getName()).log(Level.SEVERE, null, ex);
            }
            int classIndex = Util.RandomIndexOfMax(distribution, Rand);
            //==================================================
            //   System.out.println("" + classIndex);
            //=================================================
            String strClass = (transformation.getTransformedFormat().classAttribute()).value(classIndex);
            LabelSet labelSet = null;
            try {
                labelSet = LabelSet.fromBitString(strClass);
            } catch (Exception ex) {
                Logger.getLogger(LabelPowerset.class.getName()).log(Level.SEVERE, null, ex);
            }

            bipartition = labelSet.toBooleanArray();
            //==========================================================
            //   System.out.println(Arrays.toString(bipartition));
            //==========================================================
            switch (confidenceCalculationMethod) {
            case 0:
                confidences = Arrays.copyOf(labelSet.toDoubleArray(), labelSet.size());
                break;
            case 1:
                confidences = new double[numLabels];
                double prob = distribution[classIndex];
                for (int i = 0; i < numLabels; i++) {
                    confidences[i] = bipartition[i] ? prob : 1 - prob;
                }
                break;
            case 2:
                confidences = new double[numLabels];
                for (int i = 0; i < distribution.length; i++) {
                    strClass = (transformation.getTransformedFormat().classAttribute()).value(i);
                    try {
                        labelSet = LabelSet.fromBitString(strClass);
                    } catch (Exception ex) {
                        Logger.getLogger(LabelPowerset.class.getName()).log(Level.SEVERE, null, ex);
                    }
                    double[] predictionsTemp = labelSet.toDoubleArray();
                    double confidence = distribution[i];
                    for (int j = 0; j < numLabels; j++) {
                        if (predictionsTemp[j] == 1) {
                            confidences[j] += confidence;
                        }
                    }
                }
            }

            if (makePredictionsBasedOnConfidences) {
                for (int i = 0; i < confidences.length; i++) {
                    if (confidences[i] > threshold) {
                        bipartition[i] = true;
                    } else {
                        bipartition[i] = false;
                    }
                }
            }

        }

        MultiLabelOutput mlo = new MultiLabelOutput(bipartition, confidences);
        return mlo;
    }
}