Java tutorial
/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ package net.sf.jclal.activelearning.multilabel.querystrategy; import mulan.data.LabelsMetaData; import net.sf.jclal.activelearning.querystrategy.AbstractQueryStrategy; import net.sf.jclal.dataset.MulanDataset; import weka.core.Instance; /** * Abstract class for multi-label query strategies * */ public abstract class AbstractMultiLabelQueryStrategy extends AbstractQueryStrategy { private static final long serialVersionUID = 1L; /** * The number of labels */ private int numLabels = -1; /** * Array that stores the label indexes */ private int[] labelIndices; public LabelsMetaData labelsMetaData; public LabelsMetaData getLabelsMetaData() { if (labelsMetaData == null) { labelsMetaData = ((MulanDataset) getLabelledData()).getLabelsMetaData(); } return labelsMetaData; } public int[] getLabelIndices() { if (labelIndices == null) { labelIndices = ((MulanDataset) getLabelledData()).getLabelIndexes(); } return labelIndices; } public int getNumLabels() { if (numLabels == -1) { numLabels = ((MulanDataset) getLabelledData()).getNumLabels(); } return numLabels; } /** * Get the true labels of the instance * * @param instance The instance to test * @return The true category vector */ public boolean[] getTrueLabels(Instance instance) { boolean[] trueLabels = new boolean[getNumLabels()]; for (int counter = 0; counter < getNumLabels(); counter++) { int classIdx = getLabelIndices()[counter]; String classValue = instance.attribute(classIdx).value((int) instance.value(classIdx)); trueLabels[counter] = classValue.equals("1"); } return trueLabels; } @Override public void algorithmFinished() { labelsMetaData = null; labelIndices = null; } }