net.sf.jclal.activelearning.multilabel.querystrategy.MultiLabel3DimensionalQueryStrategy.java Source code

Java tutorial

Introduction

Here is the source code for net.sf.jclal.activelearning.multilabel.querystrategy.MultiLabel3DimensionalQueryStrategy.java

Source

/*
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 */
package net.sf.jclal.activelearning.multilabel.querystrategy;

import java.util.logging.Level;
import java.util.logging.Logger;
import mulan.classifier.InvalidDataException;
import mulan.classifier.ModelInitializationException;
import mulan.classifier.MultiLabelLearnerBase;
import mulan.classifier.MultiLabelOutput;
import net.sf.jclal.classifier.MulanClassifier;
import net.sf.jclal.core.IConfigure;
import org.apache.commons.configuration.Configuration;
import org.apache.commons.configuration.ConfigurationRuntimeException;
import weka.core.Instance;
import weka.core.Utils;

/**
 * Implementation of 3Dimensional strategy.
 *
 * In this moment only the CMN and CAN strategies are supported.
 *
 * See for more information Esuli, A., and Sebastiani, F. (2009). Active Learning
 * Strategies for Multi-Label Text Classification, 102-113.
 *
 * @author Oscar Gabriel Reyes Pupo
 *
 */
public class MultiLabel3DimensionalQueryStrategy extends AbstractMultiLabelQueryStrategy implements IConfigure {

    private static final long serialVersionUID = 1L;

    /*
     * The evidence dimension has to do with the type of evidence we decide to
     * use as a basis for ranking the unlabeled documents. This variable can
     * store the following values:
     * 
     * C (Min Confidence): this corresponds to the notion of uncertainty
     * sampling
     * 
     * S (MaxScore): This corresponds to the notion of relevance sampling
     */
    private char evidenceDimension;

    /*
     * The class dimension represents a policy on how to generate one
     * class-independent piece of evidence from the l class-specific ones.This
     * variable can store the following values:
     * 
     * M (Min/Max): The rationale of this policy is that we want the manual
     * annotator to concentrate on the documents that are deemed to be extremely
     * valuable at least for one class. We call this choice Min/Max (M).
     * 
     * A (Average): to average all values across all labels
     * 
     * R (Round Robin): the top-ranked examples for each class are picked, so
     * that each class will be adequately championed in the resulting rank.
     */
    private char classDimension;

    /*
     * The weight dimension has to do with the fact that, in ranking the
     * unlabeled documents, it might or it might not be desirable to treat all
     * classes equally. This variable can store the following values:
     * 
     * N (No weighting): to treat all classes alike.
     * 
     * W (Weighting): One choice is to give more weight to those classes on which
     * the current classifier is still performing badly, so as to prefer those
     * documents that are likely to bring about an improvement where it is most
     * needed.
     */
    private char weightDimension;

    private MultiLabelLearnerBase classifier;

    /**
     * Empty constructor
     */
    public MultiLabel3DimensionalQueryStrategy() {

        super();

        evidenceDimension = 'C';
        classDimension = 'M';
        weightDimension = 'N';

    }

    @Override
    public double utilityInstance(Instance instance) {

        try {

            classifier = ((MulanClassifier) getClassifier()).getInternalClassifier();

            // Evidence dimension
            MultiLabelOutput mloutput = classifier.makePrediction(instance);

            double[] confidences = mloutput.getConfidences();
            boolean[] bipartition = mloutput.getBipartition();

            double[] evidenceValues = new double[confidences.length];

            switch (evidenceDimension) {

            case 'C':

                for (int i = 0; i < confidences.length; i++) {

                    int predictedLabel = (bipartition[i]) ? 1 : 0;

                    evidenceValues[i] = 1 - Math.abs(predictedLabel - confidences[i]);
                }

                break;

            case 'S':

                for (int i = 0; i < confidences.length; i++) {

                    int predictedLabel = (bipartition[i]) ? 1 : 0;

                    evidenceValues[i] = 1 - Math.abs(predictedLabel - confidences[i]);
                }

                break;

            default:

                // The default case is 'C'

                for (int i = 0; i < confidences.length; i++) {

                    int predictedLabel = (bipartition[i]) ? 1 : 0;

                    evidenceValues[i] = 1 - Math.abs(predictedLabel - confidences[i]);
                }

                break;

            }

            // Class dimension
            double classValue = 0;

            switch (classDimension) {

            case 'M':

                if (evidenceDimension == 'C') {
                    classValue = evidenceValues[Utils.minIndex(evidenceValues)];
                }

                if (evidenceDimension == 'S') {
                    classValue = evidenceValues[Utils.maxIndex(evidenceValues)];
                }

                break;

            case 'A':

                double ave = 0;

                for (int i = 0; i < evidenceValues.length; ++i) {
                    ave += evidenceValues[i];
                }

                classValue = ave / evidenceValues.length;

                break;

            case 'R':

                System.err.println("The Round Robin (R) option is not supported yet");
                System.exit(1);

                break;

            default:

                // The default case is 'M'
                if (evidenceDimension == 'C') {
                    classValue = evidenceValues[Utils.minIndex(evidenceValues)];
                }

                if (evidenceDimension == 'S') {
                    classValue = evidenceValues[Utils.maxIndex(evidenceValues)];
                }

                break;
            }

            // weight dimension
            switch (weightDimension) {

            case 'N':

                // The classValue is not modified
                // Do nothing
                break;

            case 'W':

                System.err.println("The Weighting option (W) is not supported yet");
                System.exit(1);

                break;

            default:

                // The default case is 'N'
                break;
            }

            return classValue;

        } catch (InvalidDataException e) {
            Logger.getLogger(MultiLabel3DimensionalQueryStrategy.class.getName()).log(Level.SEVERE, null, e);
        } catch (ModelInitializationException e) {
            Logger.getLogger(MultiLabel3DimensionalQueryStrategy.class.getName()).log(Level.SEVERE, null, e);
        } catch (Exception e) {
            Logger.getLogger(MultiLabel3DimensionalQueryStrategy.class.getName()).log(Level.SEVERE, null, e);
        }

        return 0;

    }

    /**
     *
     * @return The evidence dimension used
     */
    public char getEvidenceDimension() {
        return evidenceDimension;
    }

    /**
     *
     * @param evidenceDimension The evidence dimension to use
     */
    public void setEvidenceDimension(char evidenceDimension) {
        this.evidenceDimension = evidenceDimension;
    }

    /**
     *
     * @return The class dimension used
     */
    public char getClassDimension() {
        return classDimension;
    }

    /**
     *
     * @param classDimension The class dimension to use
     */
    public void setClassDimension(char classDimension) {
        this.classDimension = classDimension;
    }

    /**
     *
     * @return The weight dimension used
     */
    public char getWeightDimension() {
        return weightDimension;
    }

    /**
     *
     * @param weightDimension The class dimension to use
     */
    public void setWeightDimension(char weightDimension) {
        this.weightDimension = weightDimension;
    }

    /**
     *
     * @param configuration The configuration object for
     * MultiLabel3DimensionalQueryStrategy
     *
     * The XML labels supported are:
     * <ul>
     * <li>evidence-dimension: The possible values are [C, S]</li>
     * <li>class-dimension: The possible values are [M, A, R]</li>
     * <li>weight-dimension: The possible values are [N, M]</li>
     * </ul>
     */
    @Override
    public void configure(Configuration configuration) {

        super.configure(configuration);

        evidenceDimension = configuration.getString("evidence-dimension", "C").toCharArray()[0];
        classDimension = configuration.getString("class-dimension", "M").toCharArray()[0];
        weightDimension = configuration.getString("weight-dimension", "N").toCharArray()[0];

        switch (evidenceDimension) {

        case 'C':

            setMaximal(false);

            break;

        case 'S':

            setMaximal(true);

            break;

        default:
            throw new ConfigurationRuntimeException("For the evidence dimension the options are C and S");
        }

        switch (classDimension) {

        case 'M':

            break;

        case 'A':

            break;

        case 'R':

            break;

        default:
            throw new ConfigurationRuntimeException("For the class dimension the options are M, A and R");
        }

        switch (weightDimension) {

        case 'N':

            break;

        case 'W':

            break;

        default:
            throw new ConfigurationRuntimeException("For the weight dimension the options are N and W");
        }

    }

}