Java tutorial
package Option2017Interface; /* * To change this license header, choose License Headers in Project Properties. * To change this template file, choose Tools | Templates * and open the template in the editor. */ import org.apache.commons.math3.distribution.NormalDistribution; /** * * @author Paulino */ public class DistFunctions { /** Nuevas funciones usando la lib de Apache Commons * http://commons.apache.org/proper/commons-math/apidocs/index.html * @param z * @return */ public static double CNDF(double z) { NormalDistribution nD = new NormalDistribution(); double cndf; cndf = nD.cumulativeProbability(z); return cndf; }// end CNDF segun Apache Common public static double PDF(double z) { NormalDistribution nD = new NormalDistribution(); double pdf; pdf = nD.density(z); return pdf; }//end PDF segun Apache Common // funciones de gauss // return phi(x) = standard Gaussian pdf public static double phi(double x) { return Math.exp(-x * x / 2) / Math.sqrt(2 * Math.PI); } // return phi(x, mu, signma) = Gaussian pdf with mean mu and stddev sigma public static double phi(double x, double mu, double sigma) { return phi((x - mu) / sigma) / sigma; } // return Phi(z) = standard Gaussian cdf using Taylor approximation public static double Phi(double z) { if (z < -8.0) return 0.0; if (z > 8.0) return 1.0; double sum = 0.0, term = z; for (int i = 3; sum + term != sum; i += 2) { sum = sum + term; term = term * z * z / i; } return 0.5 + sum * phi(z); } // return Phi(z, mu, sigma) = Gaussian cdf with mean mu and stddev sigma public static double Phi(double z, double mu, double sigma) { return Phi((z - mu) / sigma); } // Compute z such that Phi(z) = y via bisection search public static double PhiInverse(double y) { return PhiInverse(y, .00000001, -8, 8); } // bisection search private static double PhiInverse(double y, double delta, double lo, double hi) { double mid = lo + (hi - lo) / 2; if (hi - lo < delta) return mid; if (Phi(mid) > y) return PhiInverse(y, delta, lo, mid); else return PhiInverse(y, delta, mid, hi); } // returns the cumulative normal distribution function (CNDF) // for a standard normal: N(0,1) public static double CNDF2(double x) { int neg = (x < 0d) ? 1 : 0; if (neg == 1) x *= -1d; double k = (1d / (1d + 0.2316419 * x)); double y = ((((1.330274429 * k - 1.821255978) * k + 1.781477937) * k - 0.356563782) * k + 0.319381530) * k; y = 1.0 - 0.398942280401 * Math.exp(-0.5 * x * x) * y; return (1d - neg) * y + neg * (1d - y); } }