Java tutorial
/* * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.ankus.mapreduce.algorithms.clustering.kmeans; import java.io.IOException; import org.ankus.util.CommonMethods; import org.ankus.util.ArgumentsConstants; import org.ankus.util.ConfigurationVariable; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; /** * KMeansClusterAssignFinalMapper * @desc final mapper class for k-means mr job * * @version 0.0.1 * @date : 2013.08.22 * @author Moonie */ public class KMeansClusterAssignFinalMapper extends Mapper<Object, Text, NullWritable, Text> { String mDelimiter; // delimiter for attribute separation int mIndexArr[]; // index array used as clustering feature int mNominalIndexArr[]; // index array of nominal attributes used as clustering features int mExceptionIndexArr[]; // index array do not used as clustering features int mClusterCnt; // cluster count KMeansClusterInfoMgr mClusters[]; // clusters @Override protected void cleanup(Context context) throws IOException, InterruptedException { } @Override protected void map(Object key, Text value, Context context) throws IOException, InterruptedException { String[] columns = value.toString().split(mDelimiter); int clusterIndex = -1; String writeValueStr = ""; /** * cluster index get */ double distMin = 99999999; for (int k = 0; k < mClusterCnt; k++) { double attrDistanceSum = 0; double attrCnt = 0; for (int i = 0; i < columns.length; i++) { double distAttr = 0; if (CommonMethods.isContainIndex(mIndexArr, i, true) && !CommonMethods.isContainIndex(mExceptionIndexArr, i, false)) { attrCnt++; if (CommonMethods.isContainIndex(mNominalIndexArr, i, false)) { distAttr = mClusters[k].getAttributeDistance(i, columns[i], ConfigurationVariable.NOMINAL_ATTRIBUTE); } else distAttr = mClusters[k].getAttributeDistance(i, columns[i], ConfigurationVariable.NUMERIC_ATTRIBUTE); attrDistanceSum += Math.pow(distAttr, 2); if (k == 0) writeValueStr += columns[i] + mDelimiter; } } double dist = Math.sqrt(attrDistanceSum); if (dist < distMin) { distMin = dist; clusterIndex = k; } } // context.write(NullWritable.get(), new Text(value + mDelimiter + clusterIndex + mDelimiter + distMin)); context.write(NullWritable.get(), new Text(writeValueStr + clusterIndex + mDelimiter + distMin)); } @Override protected void setup(Context context) throws IOException, InterruptedException { Configuration conf = context.getConfiguration(); mDelimiter = conf.get(ArgumentsConstants.DELIMITER, "\t"); mIndexArr = CommonMethods.convertIndexStr2IntArr(conf.get(ArgumentsConstants.TARGET_INDEX, "-1")); mNominalIndexArr = CommonMethods.convertIndexStr2IntArr(conf.get(ArgumentsConstants.NOMINAL_INDEX, "-1")); mExceptionIndexArr = CommonMethods .convertIndexStr2IntArr(conf.get(ArgumentsConstants.EXCEPTION_INDEX, "-1")); mClusterCnt = Integer.parseInt(conf.get(ArgumentsConstants.CLUSTER_COUNT, "1")); // cluster load and setting Path clusterPath = new Path(conf.get(ArgumentsConstants.CLUSTER_PATH, null)); mClusters = KMeansClusterInfoMgr.loadClusterInfoFile(conf, clusterPath, mClusterCnt, mDelimiter); } }