org.apache.calcite.plan.RelOptMaterializations.java Source code

Java tutorial

Introduction

Here is the source code for org.apache.calcite.plan.RelOptMaterializations.java

Source

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to you under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.calcite.plan;

import org.apache.calcite.plan.hep.HepPlanner;
import org.apache.calcite.plan.hep.HepProgram;
import org.apache.calcite.plan.hep.HepProgramBuilder;
import org.apache.calcite.prepare.CalcitePrepareImpl;
import org.apache.calcite.rel.RelNode;
import org.apache.calcite.rel.rules.FilterProjectTransposeRule;
import org.apache.calcite.rel.rules.ProjectMergeRule;
import org.apache.calcite.rel.rules.ProjectRemoveRule;
import org.apache.calcite.util.Pair;
import org.apache.calcite.util.graph.DefaultDirectedGraph;
import org.apache.calcite.util.graph.DefaultEdge;
import org.apache.calcite.util.graph.DirectedGraph;
import org.apache.calcite.util.graph.Graphs;
import org.apache.calcite.util.graph.TopologicalOrderIterator;

import com.google.common.base.Function;
import com.google.common.base.Supplier;
import com.google.common.base.Suppliers;
import com.google.common.collect.ImmutableList;
import com.google.common.collect.Iterables;
import com.google.common.collect.Lists;
import com.google.common.collect.Sets;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Set;

/**
 * <code>MaterializationOptUtil</code> defines static utility methods for using
 * materialized views and lattices for queries.
 */
public abstract class RelOptMaterializations {

    /**
     * Returns a list of RelNode transformed from all possible combination of
     * materialized view uses. Big queries will likely have more than one
     * transformed RelNode, e.g., (t1 group by c1) join (t2 group by c2).
     * @param rel               the original RelNode
     * @param materializations  the materialized view list
     * @return the list of transformed RelNode together with their corresponding
     *         materialized views used in the transformation.
     */
    public static List<Pair<RelNode, List<RelOptMaterialization>>> useMaterializedViews(final RelNode rel,
            List<RelOptMaterialization> materializations) {
        final List<RelOptMaterialization> applicableMaterializations = getApplicableMaterializations(rel,
                materializations);
        final List<Pair<RelNode, List<RelOptMaterialization>>> applied = new ArrayList<>();
        applied.add(Pair.<RelNode, List<RelOptMaterialization>>of(rel, ImmutableList.<RelOptMaterialization>of()));
        for (RelOptMaterialization m : applicableMaterializations) {
            int count = applied.size();
            for (int i = 0; i < count; i++) {
                Pair<RelNode, List<RelOptMaterialization>> current = applied.get(i);
                List<RelNode> sub = substitute(current.left, m);
                if (!sub.isEmpty()) {
                    ImmutableList.Builder<RelOptMaterialization> builder = ImmutableList.builder();
                    builder.addAll(current.right);
                    builder.add(m);
                    List<RelOptMaterialization> uses = builder.build();
                    for (RelNode rel2 : sub) {
                        applied.add(Pair.of(rel2, uses));
                    }
                }
            }
        }

        return applied.subList(1, applied.size());
    }

    /**
     * Returns a list of RelNode transformed from all possible lattice uses.
     * @param rel       the original RelNode
     * @param lattices  the lattice list
     * @return the list of transformed RelNode together with their corresponding
     *         lattice used in the transformation.
     */
    public static List<Pair<RelNode, RelOptLattice>> useLattices(final RelNode rel, List<RelOptLattice> lattices) {
        final Set<RelOptTable> queryTables = RelOptUtil.findTables(rel);
        // Use a lattice if the query uses at least the central (fact) table of the
        // lattice.
        final List<Pair<RelNode, RelOptLattice>> latticeUses = Lists.newArrayList();
        final Set<List<String>> queryTableNames = Sets
                .newHashSet(Iterables.transform(queryTables, GET_QUALIFIED_NAME));
        // Remember leaf-join form of root so we convert at most once.
        final Supplier<RelNode> leafJoinRoot = Suppliers.memoize(new Supplier<RelNode>() {
            public RelNode get() {
                return RelOptMaterialization.toLeafJoinForm(rel);
            }
        });
        for (RelOptLattice lattice : lattices) {
            if (queryTableNames.contains(lattice.rootTable().getQualifiedName())) {
                RelNode rel2 = lattice.rewrite(leafJoinRoot.get());
                if (rel2 != null) {
                    if (CalcitePrepareImpl.DEBUG) {
                        System.out.println("use lattice:\n" + RelOptUtil.toString(rel2));
                    }
                    latticeUses.add(Pair.of(rel2, lattice));
                }
            }
        }

        return latticeUses;
    }

    /**
     * Returns a list of materializations that can potentially be used by the query.
     */
    public static List<RelOptMaterialization> getApplicableMaterializations(RelNode rel,
            List<RelOptMaterialization> materializations) {
        DirectedGraph<List<String>, DefaultEdge> usesGraph = DefaultDirectedGraph.create();
        final Map<List<String>, RelOptMaterialization> qnameMap = new HashMap<>();
        for (RelOptMaterialization materialization : materializations) {
            // If materialization is a tile in a lattice, we will deal with it shortly.
            if (materialization.table != null && materialization.starTable == null) {
                final List<String> qname = materialization.table.getQualifiedName();
                qnameMap.put(qname, materialization);
                for (RelOptTable usedTable : RelOptUtil.findTables(materialization.queryRel)) {
                    usesGraph.addVertex(qname);
                    usesGraph.addVertex(usedTable.getQualifiedName());
                    usesGraph.addEdge(usedTable.getQualifiedName(), qname);
                }
            }
        }

        // Use a materialization if uses at least one of the tables are used by
        // the query. (Simple rule that includes some materializations we won't
        // actually use.)
        // For example, given materializations:
        //   T = Emps Join Depts
        //   T2 = T Group by C1
        // the graph will contain
        //   (T, Emps), (T, Depts), (T2, T)
        // and therefore we can deduce T2 uses Emps.
        final Graphs.FrozenGraph<List<String>, DefaultEdge> frozenGraph = Graphs.makeImmutable(usesGraph);
        final Set<RelOptTable> queryTablesUsed = RelOptUtil.findTables(rel);
        final List<RelOptMaterialization> applicableMaterializations = Lists.newArrayList();
        for (List<String> qname : TopologicalOrderIterator.of(usesGraph)) {
            RelOptMaterialization materialization = qnameMap.get(qname);
            if (materialization != null && usesTable(materialization.table, queryTablesUsed, frozenGraph)) {
                applicableMaterializations.add(materialization);
            }
        }
        return applicableMaterializations;
    }

    private static final Function<RelOptTable, List<String>> GET_QUALIFIED_NAME = new Function<RelOptTable, List<String>>() {
        public List<String> apply(RelOptTable relOptTable) {
            return relOptTable.getQualifiedName();
        }
    };

    private static List<RelNode> substitute(RelNode root, RelOptMaterialization materialization) {
        // First, if the materialization is in terms of a star table, rewrite
        // the query in terms of the star table.
        if (materialization.starTable != null) {
            RelNode newRoot = RelOptMaterialization.tryUseStar(root, materialization.starRelOptTable);
            if (newRoot != null) {
                root = newRoot;
            }
        }

        // Push filters to the bottom, and combine projects on top.
        RelNode target = materialization.queryRel;
        HepProgram program = new HepProgramBuilder().addRuleInstance(FilterProjectTransposeRule.INSTANCE)
                .addRuleInstance(ProjectMergeRule.INSTANCE).addRuleInstance(ProjectRemoveRule.INSTANCE).build();

        final HepPlanner hepPlanner = new HepPlanner(program);
        hepPlanner.setRoot(target);
        target = hepPlanner.findBestExp();

        hepPlanner.setRoot(root);
        root = hepPlanner.findBestExp();

        return new MaterializedViewSubstitutionVisitor(target, root).go(materialization.tableRel);
    }

    /**
     * Returns whether {@code table} uses one or more of the tables in
     * {@code usedTables}.
     */
    private static boolean usesTable(RelOptTable table, Set<RelOptTable> usedTables,
            Graphs.FrozenGraph<List<String>, DefaultEdge> usesGraph) {
        for (RelOptTable queryTable : usedTables) {
            if (usesGraph.getShortestPath(queryTable.getQualifiedName(), table.getQualifiedName()) != null) {
                return true;
            }
        }
        return false;
    }
}

// End RelOptMaterializations.java