org.apache.calcite.sql.SqlOperator.java Source code

Java tutorial

Introduction

Here is the source code for org.apache.calcite.sql.SqlOperator.java

Source

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to you under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.calcite.sql;

import org.apache.calcite.linq4j.Ord;
import org.apache.calcite.rel.type.RelDataType;
import org.apache.calcite.rel.type.RelDataTypeFactory;
import org.apache.calcite.sql.parser.SqlParserPos;
import org.apache.calcite.sql.type.SqlOperandTypeChecker;
import org.apache.calcite.sql.type.SqlOperandTypeInference;
import org.apache.calcite.sql.type.SqlReturnTypeInference;
import org.apache.calcite.sql.type.SqlTypeName;
import org.apache.calcite.sql.util.SqlBasicVisitor;
import org.apache.calcite.sql.util.SqlVisitor;
import org.apache.calcite.sql.validate.SqlMonotonicity;
import org.apache.calcite.sql.validate.SqlValidator;
import org.apache.calcite.sql.validate.SqlValidatorImpl;
import org.apache.calcite.sql.validate.SqlValidatorScope;
import org.apache.calcite.sql.validate.SqlValidatorUtil;
import org.apache.calcite.util.Litmus;
import org.apache.calcite.util.Util;

import com.google.common.collect.ImmutableList;

import java.util.Arrays;
import java.util.List;
import java.util.Objects;

import static org.apache.calcite.util.Static.RESOURCE;

/**
 * A <code>SqlOperator</code> is a type of node in a SQL parse tree (it is NOT a
 * node in a SQL parse tree). It includes functions, operators such as '=', and
 * syntactic constructs such as 'case' statements. Operators may represent
 * query-level expressions (e.g. {@link SqlSelectOperator} or row-level
 * expressions (e.g. {@link org.apache.calcite.sql.fun.SqlBetweenOperator}.
 *
 * <p>Operators have <em>formal operands</em>, meaning ordered (and optionally
 * named) placeholders for the values they operate on. For example, the division
 * operator takes two operands; the first is the numerator and the second is the
 * denominator. In the context of subclass {@link SqlFunction}, formal operands
 * are referred to as <em>parameters</em>.
 *
 * <p>When an operator is instantiated via a {@link SqlCall}, it is supplied
 * with <em>actual operands</em>. For example, in the expression <code>3 /
 * 5</code>, the literal expression <code>3</code> is the actual operand
 * corresponding to the numerator, and <code>5</code> is the actual operand
 * corresponding to the denominator. In the context of SqlFunction, actual
 * operands are referred to as <em>arguments</em>
 *
 * <p>In many cases, the formal/actual distinction is clear from context, in
 * which case we drop these qualifiers.
 */
public abstract class SqlOperator {
    //~ Static fields/initializers ---------------------------------------------

    public static final String NL = System.getProperty("line.separator");

    /**
     * Maximum precedence.
     */
    public static final int MDX_PRECEDENCE = 200;

    //~ Instance fields --------------------------------------------------------

    /**
     * The name of the operator/function. Ex. "OVERLAY" or "TRIM"
     */
    private final String name;

    /**
     * See {@link SqlKind}. It's possible to have a name that doesn't match the
     * kind
     */
    public final SqlKind kind;

    /**
     * The precedence with which this operator binds to the expression to the
     * left. This is less than the right precedence if the operator is
     * left-associative.
     */
    private final int leftPrec;

    /**
     * The precedence with which this operator binds to the expression to the
     * right. This is more than the left precedence if the operator is
     * left-associative.
     */
    private final int rightPrec;

    /**
     * used to infer the return type of a call to this operator
     */
    private final SqlReturnTypeInference returnTypeInference;

    /**
     * used to infer types of unknown operands
     */
    private final SqlOperandTypeInference operandTypeInference;

    /**
     * used to validate operand types
     */
    private final SqlOperandTypeChecker operandTypeChecker;

    //~ Constructors -----------------------------------------------------------

    /**
     * Creates an operator.
     */
    protected SqlOperator(String name, SqlKind kind, int leftPrecedence, int rightPrecedence,
            SqlReturnTypeInference returnTypeInference, SqlOperandTypeInference operandTypeInference,
            SqlOperandTypeChecker operandTypeChecker) {
        assert kind != null;
        this.name = name;
        this.kind = kind;
        this.leftPrec = leftPrecedence;
        this.rightPrec = rightPrecedence;
        this.returnTypeInference = returnTypeInference;
        this.operandTypeInference = operandTypeInference;
        this.operandTypeChecker = operandTypeChecker;
    }

    /**
     * Creates an operator specifying left/right associativity.
     */
    protected SqlOperator(String name, SqlKind kind, int prec, boolean leftAssoc,
            SqlReturnTypeInference returnTypeInference, SqlOperandTypeInference operandTypeInference,
            SqlOperandTypeChecker operandTypeChecker) {
        this(name, kind, leftPrec(prec, leftAssoc), rightPrec(prec, leftAssoc), returnTypeInference,
                operandTypeInference, operandTypeChecker);
    }

    //~ Methods ----------------------------------------------------------------

    protected static int leftPrec(int prec, boolean leftAssoc) {
        assert (prec % 2) == 0;
        if (!leftAssoc) {
            ++prec;
        }
        return prec;
    }

    protected static int rightPrec(int prec, boolean leftAssoc) {
        assert (prec % 2) == 0;
        if (leftAssoc) {
            ++prec;
        }
        return prec;
    }

    public SqlOperandTypeChecker getOperandTypeChecker() {
        return operandTypeChecker;
    }

    /**
     * Returns a constraint on the number of operands expected by this operator.
     * Subclasses may override this method; when they don't, the range is
     * derived from the {@link SqlOperandTypeChecker} associated with this
     * operator.
     *
     * @return acceptable range
     */
    public SqlOperandCountRange getOperandCountRange() {
        if (operandTypeChecker != null) {
            return operandTypeChecker.getOperandCountRange();
        }

        // If you see this error you need to override this method
        // or give operandTypeChecker a value.
        throw Util.needToImplement(this);
    }

    public String getName() {
        return name;
    }

    /**
     * Returns the fully-qualified name of this operator.
     */
    public SqlIdentifier getNameAsId() {
        return new SqlIdentifier(getName(), SqlParserPos.ZERO);
    }

    public SqlKind getKind() {
        return kind;
    }

    public String toString() {
        return name;
    }

    public int getLeftPrec() {
        return leftPrec;
    }

    public int getRightPrec() {
        return rightPrec;
    }

    /**
     * Returns the syntactic type of this operator, never null.
     */
    public abstract SqlSyntax getSyntax();

    /**
     * Creates a call to this operand with an array of operands.
     *
     * <p>The position of the resulting call is the union of the <code>
     * pos</code> and the positions of all of the operands.
     *
     * @param functionQualifier function qualifier (e.g. "DISTINCT"), may be
     * @param pos               parser position of the identifier of the call
     * @param operands          array of operands
     */
    public SqlCall createCall(SqlLiteral functionQualifier, SqlParserPos pos, SqlNode... operands) {
        pos = pos.plusAll(Arrays.asList(operands));
        return new SqlBasicCall(this, operands, pos, false, functionQualifier);
    }

    /**
     * Creates a call to this operand with an array of operands.
     *
     * <p>The position of the resulting call is the union of the <code>
     * pos</code> and the positions of all of the operands.
     *
     * @param pos      Parser position
     * @param operands List of arguments
     * @return call to this operator
     */
    public final SqlCall createCall(SqlParserPos pos, SqlNode... operands) {
        return createCall(null, pos, operands);
    }

    /**
     * Creates a call to this operand with a list of operands contained in a
     * {@link SqlNodeList}.
     *
     * <p>The position of the resulting call inferred from the SqlNodeList.
     *
     * @param nodeList List of arguments
     * @return call to this operator
     */
    public final SqlCall createCall(SqlNodeList nodeList) {
        return createCall(null, nodeList.getParserPosition(), nodeList.toArray());
    }

    /**
     * Creates a call to this operand with a list of operands.
     *
     * <p>The position of the resulting call is the union of the <code>
     * pos</code> and the positions of all of the operands.
     */
    public final SqlCall createCall(SqlParserPos pos, List<? extends SqlNode> operandList) {
        return createCall(null, pos, operandList.toArray(new SqlNode[operandList.size()]));
    }

    /**
     * Rewrites a call to this operator. Some operators are implemented as
     * trivial rewrites (e.g. NULLIF becomes CASE). However, we don't do this at
     * createCall time because we want to preserve the original SQL syntax as
     * much as possible; instead, we do this before the call is validated (so
     * the trivial operator doesn't need its own implementation of type
     * derivation methods). The default implementation is to just return the
     * original call without any rewrite.
     *
     * @param validator Validator
     * @param call      Call to be rewritten
     * @return rewritten call
     */
    public SqlNode rewriteCall(SqlValidator validator, SqlCall call) {
        return call;
    }

    /**
     * Writes a SQL representation of a call to this operator to a writer,
     * including parentheses if the operators on either side are of greater
     * precedence.
     *
     * <p>The default implementation of this method delegates to
     * {@link SqlSyntax#unparse}.
     */
    public void unparse(SqlWriter writer, SqlCall call, int leftPrec, int rightPrec) {
        getSyntax().unparse(writer, this, call, leftPrec, rightPrec);
    }

    // REVIEW jvs 9-June-2006: See http://issues.eigenbase.org/browse/FRG-149
    // for why this method exists.
    protected void unparseListClause(SqlWriter writer, SqlNode clause) {
        unparseListClause(writer, clause, null);
    }

    protected void unparseListClause(SqlWriter writer, SqlNode clause, SqlKind sepKind) {
        if (clause instanceof SqlNodeList) {
            if (sepKind != null) {
                ((SqlNodeList) clause).andOrList(writer, sepKind);
            } else {
                ((SqlNodeList) clause).commaList(writer);
            }
        } else {
            clause.unparse(writer, 0, 0);
        }
    }

    // override Object
    public boolean equals(Object obj) {
        if (!(obj instanceof SqlOperator)) {
            return false;
        }
        if (!obj.getClass().equals(this.getClass())) {
            return false;
        }
        SqlOperator other = (SqlOperator) obj;
        return name.equals(other.name) && kind == other.kind;
    }

    public boolean isName(String testName) {
        return name.equals(testName);
    }

    @Override
    public int hashCode() {
        return Objects.hash(kind, name);
    }

    /**
     * Validates a call to this operator.
     *
     * <p>This method should not perform type-derivation or perform validation
     * related related to types. That is done later, by
     * {@link #deriveType(SqlValidator, SqlValidatorScope, SqlCall)}. This method
     * should focus on structural validation.
     *
     * <p>A typical implementation of this method first validates the operands,
     * then performs some operator-specific logic. The default implementation
     * just validates the operands.
     *
     * <p>This method is the default implementation of {@link SqlCall#validate};
     * but note that some sub-classes of {@link SqlCall} never call this method.
     *
     * @param call         the call to this operator
     * @param validator    the active validator
     * @param scope        validator scope
     * @param operandScope validator scope in which to validate operands to this
     *                     call; usually equal to scope, but not always because
     *                     some operators introduce new scopes
     * @see SqlNode#validateExpr(SqlValidator, SqlValidatorScope)
     * @see #deriveType(SqlValidator, SqlValidatorScope, SqlCall)
     */
    public void validateCall(SqlCall call, SqlValidator validator, SqlValidatorScope scope,
            SqlValidatorScope operandScope) {
        assert call.getOperator() == this;
        for (SqlNode operand : call.getOperandList()) {
            operand.validateExpr(validator, operandScope);
        }
    }

    /**
     * Validates the operands of a call, inferring the return type in the
     * process.
     *
     * @param validator active validator
     * @param scope     validation scope
     * @param call      call to be validated
     * @return inferred type
     */
    public final RelDataType validateOperands(SqlValidator validator, SqlValidatorScope scope, SqlCall call) {
        // Let subclasses know what's up.
        preValidateCall(validator, scope, call);

        // Check the number of operands
        checkOperandCount(validator, operandTypeChecker, call);

        SqlCallBinding opBinding = new SqlCallBinding(validator, scope, call);

        checkOperandTypes(opBinding, true);

        // Now infer the result type.
        RelDataType ret = inferReturnType(opBinding);
        ((SqlValidatorImpl) validator).setValidatedNodeType(call, ret);
        return ret;
    }

    /**
     * Receives notification that validation of a call to this operator is
     * beginning. Subclasses can supply custom behavior; default implementation
     * does nothing.
     *
     * @param validator invoking validator
     * @param scope     validation scope
     * @param call      the call being validated
     */
    protected void preValidateCall(SqlValidator validator, SqlValidatorScope scope, SqlCall call) {
    }

    /**
     * Infers the return type of an invocation of this operator; only called
     * after the number and types of operands have already been validated.
     * Subclasses must either override this method or supply an instance of
     * {@link SqlReturnTypeInference} to the constructor.
     *
     * @param opBinding description of invocation (not necessarily a
     * {@link SqlCall})
     * @return inferred return type
     */
    public RelDataType inferReturnType(SqlOperatorBinding opBinding) {
        if (returnTypeInference != null) {
            return returnTypeInference.inferReturnType(opBinding);
        }

        // Derived type should have overridden this method, since it didn't
        // supply a type inference rule.
        throw Util.needToImplement(this);
    }

    /**
     * Derives the type of a call to this operator.
     *
     * <p>This method is an intrinsic part of the validation process so, unlike
     * {@link #inferReturnType}, specific operators would not typically override
     * this method.
     *
     * @param validator Validator
     * @param scope     Scope of validation
     * @param call      Call to this operator
     * @return Type of call
     */
    public RelDataType deriveType(SqlValidator validator, SqlValidatorScope scope, SqlCall call) {
        for (SqlNode operand : call.getOperandList()) {
            RelDataType nodeType = validator.deriveType(scope, operand);
            assert nodeType != null;
        }

        final List<SqlNode> args = constructOperandList(validator, call, null);

        final List<RelDataType> argTypes = constructArgTypeList(validator, scope, call, args, false);

        final SqlOperator sqlOperator = SqlUtil.lookupRoutine(validator.getOperatorTable(), getNameAsId(), argTypes,
                null, null, getSyntax(), getKind());

        ((SqlBasicCall) call).setOperator(sqlOperator);
        RelDataType type = call.getOperator().validateOperands(validator, scope, call);

        // Validate and determine coercibility and resulting collation
        // name of binary operator if needed.
        type = adjustType(validator, call, type);
        SqlValidatorUtil.checkCharsetAndCollateConsistentIfCharType(type);
        return type;
    }

    protected List<String> constructArgNameList(SqlCall call) {
        // If any arguments are named, construct a map.
        final ImmutableList.Builder<String> nameBuilder = ImmutableList.builder();
        for (SqlNode operand : call.getOperandList()) {
            if (operand.getKind() == SqlKind.ARGUMENT_ASSIGNMENT) {
                final List<SqlNode> operandList = ((SqlCall) operand).getOperandList();
                nameBuilder.add(((SqlIdentifier) operandList.get(1)).getSimple());
            }
        }
        ImmutableList<String> argNames = nameBuilder.build();

        if (argNames.isEmpty()) {
            return null;
        } else {
            return argNames;
        }
    }

    protected List<SqlNode> constructOperandList(SqlValidator validator, SqlCall call, List<String> argNames) {
        if (argNames == null) {
            return call.getOperandList();
        }
        if (argNames.size() < call.getOperandList().size()) {
            throw validator.newValidationError(call, RESOURCE.someButNotAllArgumentsAreNamed());
        }
        final int duplicate = Util.firstDuplicate(argNames);
        if (duplicate >= 0) {
            throw validator.newValidationError(call, RESOURCE.duplicateArgumentName(argNames.get(duplicate)));
        }
        final ImmutableList.Builder<SqlNode> argBuilder = ImmutableList.builder();
        for (SqlNode operand : call.getOperandList()) {
            if (operand.getKind() == SqlKind.ARGUMENT_ASSIGNMENT) {
                final List<SqlNode> operandList = ((SqlCall) operand).getOperandList();
                argBuilder.add(operandList.get(0));
            }
        }
        return argBuilder.build();
    }

    protected List<RelDataType> constructArgTypeList(SqlValidator validator, SqlValidatorScope scope, SqlCall call,
            List<SqlNode> args, boolean convertRowArgToColumnList) {
        // Scope for operands. Usually the same as 'scope'.
        final SqlValidatorScope operandScope = scope.getOperandScope(call);

        final ImmutableList.Builder<RelDataType> argTypeBuilder = ImmutableList.builder();
        for (SqlNode operand : args) {
            RelDataType nodeType;
            // for row arguments that should be converted to ColumnList
            // types, set the nodeType to a ColumnList type but defer
            // validating the arguments of the row constructor until we know
            // for sure that the row argument maps to a ColumnList type
            if (operand.getKind() == SqlKind.ROW && convertRowArgToColumnList) {
                RelDataTypeFactory typeFactory = validator.getTypeFactory();
                nodeType = typeFactory.createSqlType(SqlTypeName.COLUMN_LIST);
            } else {
                nodeType = validator.deriveType(operandScope, operand);
            }
            ((SqlValidatorImpl) validator).setValidatedNodeType(operand, nodeType);
            argTypeBuilder.add(nodeType);
        }

        return argTypeBuilder.build();
    }

    /**
     * Returns whether this operator should be surrounded by space when
     * unparsed.
     *
     * @return whether this operator should be surrounded by space
     */
    boolean needsSpace() {
        return true;
    }

    /**
     * Validates and determines coercibility and resulting collation name of
     * binary operator if needed.
     */
    protected RelDataType adjustType(SqlValidator validator, final SqlCall call, RelDataType type) {
        return type;
    }

    /**
     * Infers the type of a call to this operator with a given set of operand
     * types. Shorthand for {@link #inferReturnType(SqlOperatorBinding)}.
     */
    public final RelDataType inferReturnType(RelDataTypeFactory typeFactory, List<RelDataType> operandTypes) {
        return inferReturnType(new ExplicitOperatorBinding(typeFactory, this, operandTypes));
    }

    /**
     * Checks that the operand values in a {@link SqlCall} to this operator are
     * valid. Subclasses must either override this method or supply an instance
     * of {@link SqlOperandTypeChecker} to the constructor.
     *
     * @param callBinding    description of call
     * @param throwOnFailure whether to throw an exception if check fails
     *                       (otherwise returns false in that case)
     * @return whether check succeeded
     */
    public boolean checkOperandTypes(SqlCallBinding callBinding, boolean throwOnFailure) {
        // Check that all of the operands are of the right type.
        if (null == operandTypeChecker) {
            // If you see this you must either give operandTypeChecker a value
            // or override this method.
            throw Util.needToImplement(this);
        }

        if (kind != SqlKind.ARGUMENT_ASSIGNMENT) {
            for (Ord<SqlNode> operand : Ord.zip(callBinding.operands())) {
                if (operand.e != null && operand.e.getKind() == SqlKind.DEFAULT
                        && !operandTypeChecker.isOptional(operand.i)) {
                    throw callBinding.getValidator().newValidationError(callBinding.getCall(),
                            RESOURCE.defaultForOptionalParameter());
                }
            }
        }

        return operandTypeChecker.checkOperandTypes(callBinding, throwOnFailure);
    }

    protected void checkOperandCount(SqlValidator validator, SqlOperandTypeChecker argType, SqlCall call) {
        SqlOperandCountRange od = call.getOperator().getOperandCountRange();
        if (od.isValidCount(call.operandCount())) {
            return;
        }
        if (od.getMin() == od.getMax()) {
            throw validator.newValidationError(call,
                    RESOURCE.invalidArgCount(call.getOperator().getName(), od.getMin()));
        } else {
            throw validator.newValidationError(call, RESOURCE.wrongNumOfArguments());
        }
    }

    /**
     * Returns whether the given operands are valid. If not valid and
     * {@code fail}, throws an assertion error.
     *
     * <p>Similar to {@link #checkOperandCount}, but some operators may have
     * different valid operands in {@link SqlNode} and {@code RexNode} formats
     * (some examples are CAST and AND), and this method throws internal errors,
     * not user errors.</p>
     */
    public boolean validRexOperands(int count, Litmus litmus) {
        return true;
    }

    /**
     * Returns a template describing how the operator signature is to be built.
     * E.g for the binary + operator the template looks like "{1} {0} {2}" {0}
     * is the operator, subsequent numbers are operands.
     *
     * @param operandsCount is used with functions that can take a variable
     *                      number of operands
     * @return signature template, or null to indicate that a default template
     * will suffice
     */
    public String getSignatureTemplate(final int operandsCount) {
        return null;
    }

    /**
     * Returns a string describing the expected operand types of a call, e.g.
     * "SUBSTR(VARCHAR, INTEGER, INTEGER)".
     */
    public final String getAllowedSignatures() {
        return getAllowedSignatures(name);
    }

    /**
     * Returns a string describing the expected operand types of a call, e.g.
     * "SUBSTRING(VARCHAR, INTEGER, INTEGER)" where the name (SUBSTRING in this
     * example) can be replaced by a specified name.
     */
    public String getAllowedSignatures(String opNameToUse) {
        assert operandTypeChecker != null : "If you see this, assign operandTypeChecker a value "
                + "or override this function";
        return operandTypeChecker.getAllowedSignatures(this, opNameToUse).trim();
    }

    public SqlOperandTypeInference getOperandTypeInference() {
        return operandTypeInference;
    }

    /**
     * Returns whether this operator is an aggregate function. By default,
     * subclass type is used (an instance of SqlAggFunction is assumed to be an
     * aggregator; anything else is not).
     *
     * <p>Per SQL:2011, there are <dfn>aggregate functions</dfn> and
     * <dfn>window functions</dfn>.
     * Every aggregate function (e.g. SUM) is also a window function.
     * There are window functions that are not aggregate functions, e.g. RANK,
     * NTILE, LEAD, FIRST_VALUE.</p>
     *
     * <p>Collectively, aggregate and window functions are called <dfn>analytic
     * functions</dfn>. Despite its name, this method returns true for every
     * analytic function.</p>
     *
     * @see #requiresOrder()
     *
     * @return whether this operator is an analytic function (aggregate function
     * or window function)
     */
    public boolean isAggregator() {
        return false;
    }

    /** Returns whether this is a window function that requires an OVER clause.
     *
     * <p>For example, returns true for {@code RANK}, {@code DENSE_RANK} and
     * other ranking functions; returns false for {@code SUM}, {@code COUNT},
     * {@code MIN}, {@code MAX}, {@code AVG} (they can be used as non-window
     * aggregate functions).
     *
     * <p>If {@code requiresOver} returns true, then {@link #isAggregator()} must
     * also return true.
     *
     * @see #allowsFraming()
     * @see #requiresOrder()
     */
    public boolean requiresOver() {
        return false;
    }

    /**
     * Returns whether this is a window function that requires ordering.
     *
     * <p>Per SQL:2011, 2, 6.10: "If &lt;ntile function&gt;, &lt;lead or lag
     * function&gt;, RANK or DENSE_RANK is specified, then the window ordering
     * clause shall be present."</p>
     *
     * @see #isAggregator()
     */
    public boolean requiresOrder() {
        return false;
    }

    /**
     * Returns whether this is a window function that allows framing (i.e. a
     * ROWS or RANGE clause in the window specification).
     */
    public boolean allowsFraming() {
        return true;
    }

    /**
     * Returns whether this is a group function.
     *
     * <p>Group functions can only appear in the GROUP BY clause.
     *
     * <p>Examples are {@code HOP}, {@code TUMBLE}, {@code SESSION}.
     *
     * <p>Group functions have auxiliary functions, e.g. {@code HOP_START}, but
     * these are not group functions.
     */
    public boolean isGroup() {
        return false;
    }

    /**
     * Returns whether this is an group auxiliary function.
     *
     * <p>Examples are {@code HOP_START} and {@code HOP_END} (both auxiliary to
     * {@code HOP}).
     *
     * @see #isGroup()
     */
    public boolean isGroupAuxiliary() {
        return false;
    }

    /**
     * Accepts a {@link SqlVisitor}, visiting each operand of a call. Returns
     * null.
     *
     * @param visitor Visitor
     * @param call    Call to visit
     */
    public <R> R acceptCall(SqlVisitor<R> visitor, SqlCall call) {
        for (SqlNode operand : call.getOperandList()) {
            if (operand == null) {
                continue;
            }
            operand.accept(visitor);
        }
        return null;
    }

    /**
     * Accepts a {@link SqlVisitor}, directing an
     * {@link org.apache.calcite.sql.util.SqlBasicVisitor.ArgHandler}
     * to visit an operand of a call.
     *
     * <p>The argument handler allows fine control about how the operands are
     * visited, and how the results are combined.
     *
     * @param visitor         Visitor
     * @param call            Call to visit
     * @param onlyExpressions If true, ignores operands which are not
     *                        expressions. For example, in the call to the
     *                        <code>AS</code> operator
     * @param argHandler      Called for each operand
     */
    public <R> void acceptCall(SqlVisitor<R> visitor, SqlCall call, boolean onlyExpressions,
            SqlBasicVisitor.ArgHandler<R> argHandler) {
        List<SqlNode> operands = call.getOperandList();
        for (int i = 0; i < operands.size(); i++) {
            argHandler.visitChild(visitor, call, i, operands.get(i));
        }
    }

    /**
     * @return the return type inference strategy for this operator, or null if
     * return type inference is implemented by a subclass override
     */
    public SqlReturnTypeInference getReturnTypeInference() {
        return returnTypeInference;
    }

    /**
     * Returns whether this operator is monotonic.
     *
     * <p>Default implementation returns {@link SqlMonotonicity#NOT_MONOTONIC}.
     *
     * @param call  Call to this operator
     * @param scope Scope in which the call occurs
     *
     * @deprecated Use {@link #getMonotonicity(SqlOperatorBinding)}
     */
    @Deprecated // to be removed before 2.0
    public SqlMonotonicity getMonotonicity(SqlCall call, SqlValidatorScope scope) {
        return getMonotonicity(new SqlCallBinding(scope.getValidator(), scope, call));
    }

    /**
     * Returns whether a call to this operator is monotonic.
     *
     * <p>Default implementation returns {@link SqlMonotonicity#NOT_MONOTONIC}.
     *
     * @param call Call to this operator with particular arguments and information
     *             about the monotonicity of the arguments
     */
    public SqlMonotonicity getMonotonicity(SqlOperatorBinding call) {
        return SqlMonotonicity.NOT_MONOTONIC;
    }

    /**
     * @return true iff a call to this operator is guaranteed to always return
     * the same result given the same operands; true is assumed by default
     */
    public boolean isDeterministic() {
        return true;
    }

    /**
     * @return true iff it is unsafe to cache query plans referencing this
     * operator; false is assumed by default
     */
    public boolean isDynamicFunction() {
        return false;
    }

    /**
     * Method to check if call requires expansion when it has decimal operands.
     * The default implementation is to return true.
     */
    public boolean requiresDecimalExpansion() {
        return true;
    }

    /**
     * Returns whether the <code>ordinal</code>th argument to this operator must
     * be scalar (as opposed to a query).
     *
     * <p>If true (the default), the validator will attempt to convert the
     * argument into a scalar sub-query, which must have one column and return at
     * most one row.
     *
     * <p>Operators such as <code>SELECT</code> and <code>EXISTS</code> override
     * this method.
     */
    public boolean argumentMustBeScalar(int ordinal) {
        return true;
    }
}

// End SqlOperator.java