Java tutorial
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.eagle.security.userprofile.model; import org.apache.commons.math3.linear.RealMatrix; import org.apache.commons.math3.linear.RealVector; import org.apache.commons.math3.stat.descriptive.moment.Mean; import org.apache.commons.math3.stat.descriptive.moment.StandardDeviation; import org.apache.eagle.security.userprofile.model.UserCommandStatistics; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.List; import java.io.Serializable; public class UserProfileEigenModel implements Serializable { private Long m_version; private String m_site; private String m_user; private RealMatrix m_uMatrix; private RealMatrix m_diagonalMatrix; private int m_dimension; private RealVector m_minVector; private RealVector m_maxVector; private RealVector[] m_principalComponents; private RealVector m_maximumL2Norm; private RealVector m_minimumL2Norm; private UserCommandStatistics[] m_statistics; public UserProfileEigenModel(Long version, String site, String user, RealMatrix uMatrix, RealMatrix diagonalMatrix, int dimension, RealVector minVector, RealVector maxVector, RealVector[] principalComponents, RealVector maximumL2Norm, RealVector minimumL2Norm, UserCommandStatistics[] statistics) { m_version = version; m_site = site; m_user = user; m_uMatrix = uMatrix; m_diagonalMatrix = diagonalMatrix; m_dimension = dimension; m_minVector = minVector; m_maxVector = maxVector; m_principalComponents = principalComponents; m_maximumL2Norm = maximumL2Norm; m_minimumL2Norm = minimumL2Norm; m_statistics = statistics; } public UserCommandStatistics[] statistics() { return m_statistics; } public RealVector maxProbabilityEstimate() { return m_maxVector; } public RealVector[] principalComponents() { return m_principalComponents; } public RealVector maximumL2Norm() { return m_maximumL2Norm; } public void print_RealVector(RealVector v) { double[] tmp = v.toArray(); for (double x : tmp) System.out.print(" " + x); System.out.println(" "); } public void print_RealMatrix(RealMatrix rm) { double[][] m = rm.getData(); for (double[] x : m) { for (double y : x) System.out.print(" " + y); System.out.println(" "); } } public void print() { System.out.println("EigenModel:" + " version:" + m_version + " site:" + m_site + " user:" + m_user + " dimension:" + m_dimension); System.out.println("UserCommandStatistics"); for (UserCommandStatistics x : m_statistics) x.print(); System.out.println("m_minVector"); print_RealVector(m_minVector); System.out.println("m_maxVector"); print_RealVector(m_maxVector); System.out.println("m_maximumL2Norm"); print_RealVector(m_maximumL2Norm); System.out.println("m_minimumL2Norm"); print_RealVector(m_minimumL2Norm); System.out.println("m_principalComponents"); for (RealVector y : m_principalComponents) print_RealVector(y); System.out.println("m_uMatrix"); print_RealMatrix(m_uMatrix); System.out.println("m_diagonalMatrix"); print_RealMatrix(m_diagonalMatrix); } }