org.apache.lucene.classification.CachingNaiveBayesClassifier.java Source code

Java tutorial

Introduction

Here is the source code for org.apache.lucene.classification.CachingNaiveBayesClassifier.java

Source

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.lucene.classification;

import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.MultiTerms;
import org.apache.lucene.index.Term;
import org.apache.lucene.index.Terms;
import org.apache.lucene.index.TermsEnum;
import org.apache.lucene.search.BooleanClause;
import org.apache.lucene.search.BooleanQuery;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.TermQuery;
import org.apache.lucene.search.TotalHitCountCollector;
import org.apache.lucene.util.BytesRef;

/**
 * A simplistic Lucene based NaiveBayes classifier, with caching feature, see
 * <code>http://en.wikipedia.org/wiki/Naive_Bayes_classifier</code>
 * <p>
 * This is NOT an online classifier.
 *
 * @lucene.experimental
 */
public class CachingNaiveBayesClassifier extends SimpleNaiveBayesClassifier {
    //for caching classes this will be the classification class list
    private final ArrayList<BytesRef> cclasses = new ArrayList<>();
    // it's a term-inmap style map, where the inmap contains class-hit pairs to the
    // upper term
    private final Map<String, Map<BytesRef, Integer>> termCClassHitCache = new HashMap<>();
    // the term frequency in classes
    private final Map<BytesRef, Double> classTermFreq = new HashMap<>();
    private boolean justCachedTerms;
    private int docsWithClassSize;

    /**
     * Creates a new NaiveBayes classifier with inside caching. If you want less memory usage you could call
     * {@link #reInitCache(int, boolean) reInitCache()}.
     *
     * @param indexReader     the reader on the index to be used for classification
     * @param analyzer       an {@link Analyzer} used to analyze unseen text
     * @param query          a {@link Query} to eventually filter the docs used for training the classifier, or {@code null}
     *                       if all the indexed docs should be used
     * @param classFieldName the name of the field used as the output for the classifier
     * @param textFieldNames the name of the fields used as the inputs for the classifier
     */
    public CachingNaiveBayesClassifier(IndexReader indexReader, Analyzer analyzer, Query query,
            String classFieldName, String... textFieldNames) {
        super(indexReader, analyzer, query, classFieldName, textFieldNames);
        // building the cache
        try {
            reInitCache(0, true);
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
    }

    protected List<ClassificationResult<BytesRef>> assignClassNormalizedList(String inputDocument)
            throws IOException {
        String[] tokenizedText = tokenize(inputDocument);

        List<ClassificationResult<BytesRef>> assignedClasses = calculateLogLikelihood(tokenizedText);

        // normalization
        // The values transforms to a 0-1 range
        ArrayList<ClassificationResult<BytesRef>> asignedClassesNorm = super.normClassificationResults(
                assignedClasses);
        return asignedClassesNorm;
    }

    private List<ClassificationResult<BytesRef>> calculateLogLikelihood(String[] tokenizedText) throws IOException {
        // initialize the return List
        ArrayList<ClassificationResult<BytesRef>> ret = new ArrayList<>();
        for (BytesRef cclass : cclasses) {
            ClassificationResult<BytesRef> cr = new ClassificationResult<>(cclass, 0d);
            ret.add(cr);
        }
        // for each word
        for (String word : tokenizedText) {
            // search with text:word for all class:c
            Map<BytesRef, Integer> hitsInClasses = getWordFreqForClassess(word);
            // for each class
            for (BytesRef cclass : cclasses) {
                Integer hitsI = hitsInClasses.get(cclass);
                // if the word is out of scope hitsI could be null
                int hits = 0;
                if (hitsI != null) {
                    hits = hitsI;
                }
                // num : count the no of times the word appears in documents of class c(+1)
                double num = hits + 1; // +1 is added because of add 1 smoothing

                // den : for the whole dictionary, count the no of times a word appears in documents of class c (+|V|)
                double den = classTermFreq.get(cclass) + docsWithClassSize;

                // P(w|c) = num/den
                double wordProbability = num / den;

                // modify the value in the result list item
                int removeIdx = -1;
                int i = 0;
                for (ClassificationResult<BytesRef> cr : ret) {
                    if (cr.getAssignedClass().equals(cclass)) {
                        removeIdx = i;
                        break;
                    }
                    i++;
                }

                if (removeIdx >= 0) {
                    ClassificationResult<BytesRef> toRemove = ret.get(removeIdx);
                    ret.add(new ClassificationResult<>(toRemove.getAssignedClass(),
                            toRemove.getScore() + Math.log(wordProbability)));
                    ret.remove(removeIdx);
                }

            }
        }

        // log(P(d|c)) = log(P(w1|c))+...+log(P(wn|c))
        return ret;
    }

    private Map<BytesRef, Integer> getWordFreqForClassess(String word) throws IOException {

        Map<BytesRef, Integer> insertPoint;
        insertPoint = termCClassHitCache.get(word);

        // if we get the answer from the cache
        if (insertPoint != null) {
            if (!insertPoint.isEmpty()) {
                return insertPoint;
            }
        }

        Map<BytesRef, Integer> searched = new ConcurrentHashMap<>();

        // if we dont get the answer, but it's relevant we must search it and insert to the cache
        if (insertPoint != null || !justCachedTerms) {
            for (BytesRef cclass : cclasses) {
                BooleanQuery.Builder booleanQuery = new BooleanQuery.Builder();
                BooleanQuery.Builder subQuery = new BooleanQuery.Builder();
                for (String textFieldName : textFieldNames) {
                    subQuery.add(new BooleanClause(new TermQuery(new Term(textFieldName, word)),
                            BooleanClause.Occur.SHOULD));
                }
                booleanQuery.add(new BooleanClause(subQuery.build(), BooleanClause.Occur.MUST));
                booleanQuery.add(new BooleanClause(new TermQuery(new Term(classFieldName, cclass)),
                        BooleanClause.Occur.MUST));
                if (query != null) {
                    booleanQuery.add(query, BooleanClause.Occur.MUST);
                }
                TotalHitCountCollector totalHitCountCollector = new TotalHitCountCollector();
                indexSearcher.search(booleanQuery.build(), totalHitCountCollector);

                int ret = totalHitCountCollector.getTotalHits();
                if (ret != 0) {
                    searched.put(cclass, ret);
                }
            }
            if (insertPoint != null) {
                // threadsafe and concurrent write
                termCClassHitCache.put(word, searched);
            }
        }

        return searched;
    }

    /**
     * This function is building the frame of the cache. The cache is storing the
     * word occurrences to the memory after those searched once. This cache can
     * made 2-100x speedup in proper use, but can eat lot of memory. There is an
     * option to lower the memory consume, if a word have really low occurrence in
     * the index you could filter it out. The other parameter is switching between
     * the term searching, if it true, just the terms in the skeleton will be
     * searched, but if it false the terms whoes not in the cache will be searched
     * out too (but not cached).
     *
     * @param minTermOccurrenceInCache Lower cache size with higher value.
     * @param justCachedTerms          The switch for fully exclude low occurrence docs.
     * @throws IOException If there is a low-level I/O error.
     */
    public void reInitCache(int minTermOccurrenceInCache, boolean justCachedTerms) throws IOException {
        this.justCachedTerms = justCachedTerms;

        this.docsWithClassSize = countDocsWithClass();
        termCClassHitCache.clear();
        cclasses.clear();
        classTermFreq.clear();

        // build the cache for the word
        Map<String, Long> frequencyMap = new HashMap<>();
        for (String textFieldName : textFieldNames) {
            TermsEnum termsEnum = MultiTerms.getTerms(indexReader, textFieldName).iterator();
            while (termsEnum.next() != null) {
                BytesRef term = termsEnum.term();
                String termText = term.utf8ToString();
                long frequency = termsEnum.docFreq();
                Long lastfreq = frequencyMap.get(termText);
                if (lastfreq != null)
                    frequency += lastfreq;
                frequencyMap.put(termText, frequency);
            }
        }
        for (Map.Entry<String, Long> entry : frequencyMap.entrySet()) {
            if (entry.getValue() > minTermOccurrenceInCache) {
                termCClassHitCache.put(entry.getKey(), new ConcurrentHashMap<BytesRef, Integer>());
            }
        }

        // fill the class list
        Terms terms = MultiTerms.getTerms(indexReader, classFieldName);
        TermsEnum termsEnum = terms.iterator();
        while ((termsEnum.next()) != null) {
            cclasses.add(BytesRef.deepCopyOf(termsEnum.term()));
        }
        // fill the classTermFreq map
        for (BytesRef cclass : cclasses) {
            double avgNumberOfUniqueTerms = 0;
            for (String textFieldName : textFieldNames) {
                terms = MultiTerms.getTerms(indexReader, textFieldName);
                long numPostings = terms.getSumDocFreq(); // number of term/doc pairs
                avgNumberOfUniqueTerms += numPostings / (double) terms.getDocCount();
            }
            int docsWithC = indexReader.docFreq(new Term(classFieldName, cclass));
            classTermFreq.put(cclass, avgNumberOfUniqueTerms * docsWithC);
        }
    }
}