org.apache.lucene.search.similarities.IBSimilarity.java Source code

Java tutorial

Introduction

Here is the source code for org.apache.lucene.search.similarities.IBSimilarity.java

Source

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.lucene.search.similarities;

import java.util.ArrayList;
import java.util.List;

import org.apache.lucene.search.Explanation;
import org.apache.lucene.search.similarities.Normalization.NoNormalization;

/**
 * Provides a framework for the family of information-based models, as described
 * in Stéphane Clinchant and Eric Gaussier. 2010. Information-based
 * models for ad hoc IR. In Proceeding of the 33rd international ACM SIGIR
 * conference on Research and development in information retrieval (SIGIR '10).
 * ACM, New York, NY, USA, 234-241.
 * <p>The retrieval function is of the form <em>RSV(q, d) = &sum;
 * -x<sup>q</sup><sub>w</sub> log Prob(X<sub>w</sub> &ge;
 * t<sup>d</sup><sub>w</sub> | &lambda;<sub>w</sub>)</em>, where
 * <ul>
 *   <li><em>x<sup>q</sup><sub>w</sub></em> is the query boost;</li>
 *   <li><em>X<sub>w</sub></em> is a random variable that counts the occurrences
 *   of word <em>w</em>;</li>
 *   <li><em>t<sup>d</sup><sub>w</sub></em> is the normalized term frequency;</li>
 *   <li><em>&lambda;<sub>w</sub></em> is a parameter.</li>
 * </ul>
 * <p>The framework described in the paper has many similarities to the DFR
 * framework (see {@link DFRSimilarity}). It is possible that the two
 * Similarities will be merged at one point.</p>
 * <p>To construct an IBSimilarity, you must specify the implementations for 
 * all three components of the Information-Based model.
 * <ol>
 *     <li>{@link Distribution}: Probabilistic distribution used to
 *         model term occurrence
 *         <ul>
 *             <li>{@link DistributionLL}: Log-logistic</li>
 *             <li>{@link DistributionLL}: Smoothed power-law</li>
 *         </ul>
 *     </li>
 *     <li>{@link Lambda}: &lambda;<sub>w</sub> parameter of the
 *         probability distribution
 *         <ul>
 *             <li>{@link LambdaDF}: <code>N<sub>w</sub>/N</code> or average
 *                 number of documents where w occurs</li>
 *             <li>{@link LambdaTTF}: <code>F<sub>w</sub>/N</code> or
 *                 average number of occurrences of w in the collection</li>
 *         </ul>
 *     </li>
 *     <li>{@link Normalization}: Term frequency normalization 
 *         <blockquote>Any supported DFR normalization (listed in
 *                      {@link DFRSimilarity})</blockquote>
 *     </li>
 * </ol>
 * @see DFRSimilarity
 * @lucene.experimental 
 */
public class IBSimilarity extends SimilarityBase {
    /** The probabilistic distribution used to model term occurrence. */
    protected final Distribution distribution;
    /** The <em>lambda (&lambda;<sub>w</sub>)</em> parameter. */
    protected final Lambda lambda;
    /** The term frequency normalization. */
    protected final Normalization normalization;

    /**
     * Creates IBSimilarity from the three components.
     * <p>
     * Note that <code>null</code> values are not allowed:
     * if you want no normalization, instead pass 
     * {@link NoNormalization}.
     * @param distribution probabilistic distribution modeling term occurrence
     * @param lambda distribution's &lambda;<sub>w</sub> parameter
     * @param normalization term frequency normalization
     */
    public IBSimilarity(Distribution distribution, Lambda lambda, Normalization normalization) {
        this.distribution = distribution;
        this.lambda = lambda;
        this.normalization = normalization;
    }

    @Override
    protected double score(BasicStats stats, double freq, double docLen) {
        return stats.getBoost()
                * distribution.score(stats, normalization.tfn(stats, freq, docLen), lambda.lambda(stats));
    }

    @Override
    protected void explain(List<Explanation> subs, BasicStats stats, double freq, double docLen) {
        if (stats.getBoost() != 1.0d) {
            subs.add(Explanation.match((float) stats.getBoost(), "boost, query boost"));
        }
        Explanation normExpl = normalization.explain(stats, freq, docLen);
        Explanation lambdaExpl = lambda.explain(stats);
        subs.add(normExpl);
        subs.add(lambdaExpl);
        subs.add(distribution.explain(stats, normExpl.getValue().floatValue(), lambdaExpl.getValue().floatValue()));
    }

    @Override
    protected Explanation explain(BasicStats stats, Explanation freq, double docLen) {
        List<Explanation> subs = new ArrayList<>();
        explain(subs, stats, freq.getValue().doubleValue(), docLen);

        return Explanation.match((float) score(stats, freq.getValue().doubleValue(), docLen),
                "score(" + getClass().getSimpleName() + ", freq=" + freq.getValue() + "), computed as boost * "
                        + "distribution.score(stats, normalization.tfn(stats, freq,"
                        + " docLen), lambda.lambda(stats)) from:",
                subs);
    }

    /**
     * The name of IB methods follow the pattern
     * {@code IB <distribution> <lambda><normalization>}. The name of the
     * distribution is the same as in the original paper; for the names of lambda
     * parameters, refer to the javadoc of the {@link Lambda} classes.
     */
    @Override
    public String toString() {
        return "IB " + distribution.toString() + "-" + lambda.toString() + normalization.toString();
    }

    /**
     * Returns the distribution
     */
    public Distribution getDistribution() {
        return distribution;
    }

    /**
     * Returns the distribution's lambda parameter
     */
    public Lambda getLambda() {
        return lambda;
    }

    /**
     * Returns the term frequency normalization
     */
    public Normalization getNormalization() {
        return normalization;
    }
}