org.apache.lucene.util.automaton.CompiledAutomaton.java Source code

Java tutorial

Introduction

Here is the source code for org.apache.lucene.util.automaton.CompiledAutomaton.java

Source

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.lucene.util.automaton;

import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

import org.apache.lucene.index.SingleTermsEnum;
import org.apache.lucene.index.Terms;
import org.apache.lucene.index.TermsEnum;
import org.apache.lucene.util.Accountable;
import org.apache.lucene.util.BytesRef;
import org.apache.lucene.util.BytesRefBuilder;
import org.apache.lucene.util.IntsRef;
import org.apache.lucene.util.RamUsageEstimator;
import org.apache.lucene.util.StringHelper;
import org.apache.lucene.util.UnicodeUtil;

/**
 * Immutable class holding compiled details for a given
 * Automaton.  The Automaton is deterministic, must not have
 * dead states but is not necessarily minimal.
 *
 * @lucene.experimental
 */
public class CompiledAutomaton implements Accountable {
    private static final long BASE_RAM_BYTES = RamUsageEstimator.shallowSizeOfInstance(CompiledAutomaton.class);

    /**
     * Automata are compiled into different internal forms for the
     * most efficient execution depending upon the language they accept.
     */
    public enum AUTOMATON_TYPE {
        /** Automaton that accepts no strings. */
        NONE,
        /** Automaton that accepts all possible strings. */
        ALL,
        /** Automaton that accepts only a single fixed string. */
        SINGLE,
        /** Catch-all for any other automata. */
        NORMAL
    };

    /** If simplify is true this will be the "simplified" type; else, this is NORMAL */
    public final AUTOMATON_TYPE type;

    /** 
     * For {@link AUTOMATON_TYPE#SINGLE} this is the singleton term.
     */
    public final BytesRef term;

    /** 
     * Matcher for quickly determining if a byte[] is accepted.
     * only valid for {@link AUTOMATON_TYPE#NORMAL}.
     */
    public final ByteRunAutomaton runAutomaton;

    /**
     * Two dimensional array of transitions, indexed by state
     * number for traversal. The state numbering is consistent with
     * {@link #runAutomaton}. 
     * Only valid for {@link AUTOMATON_TYPE#NORMAL}.
     */
    public final Automaton automaton;

    /**
     * Shared common suffix accepted by the automaton. Only valid
     * for {@link AUTOMATON_TYPE#NORMAL}, and only when the
     * automaton accepts an infinite language.  This will be null
     * if the common prefix is length 0.
     */
    public final BytesRef commonSuffixRef;

    /**
     * Indicates if the automaton accepts a finite set of strings.
     * Null if this was not computed.
     * Only valid for {@link AUTOMATON_TYPE#NORMAL}.
     */
    public final Boolean finite;

    /** Which state, if any, accepts all suffixes, else -1. */
    public final int sinkState;

    /** Create this, passing simplify=true and finite=null, so that we try
     *  to simplify the automaton and determine if it is finite. */
    public CompiledAutomaton(Automaton automaton) {
        this(automaton, null, true);
    }

    /** Returns sink state, if present, else -1. */
    private static int findSinkState(Automaton automaton) {
        int numStates = automaton.getNumStates();
        Transition t = new Transition();
        int foundState = -1;
        for (int s = 0; s < numStates; s++) {
            if (automaton.isAccept(s)) {
                int count = automaton.initTransition(s, t);
                boolean isSinkState = false;
                for (int i = 0; i < count; i++) {
                    automaton.getNextTransition(t);
                    if (t.dest == s && t.min == 0 && t.max == 0xff) {
                        isSinkState = true;
                        break;
                    }
                }
                if (isSinkState) {
                    foundState = s;
                    break;
                }
            }
        }

        return foundState;
    }

    /** Create this.  If finite is null, we use {@link Operations#isFinite}
     *  to determine whether it is finite.  If simplify is true, we run
     *  possibly expensive operations to determine if the automaton is one
     *  the cases in {@link CompiledAutomaton.AUTOMATON_TYPE}. */
    public CompiledAutomaton(Automaton automaton, Boolean finite, boolean simplify) {
        this(automaton, finite, simplify, Operations.DEFAULT_MAX_DETERMINIZED_STATES, false);
    }

    /** Create this.  If finite is null, we use {@link Operations#isFinite}
     *  to determine whether it is finite.  If simplify is true, we run
     *  possibly expensive operations to determine if the automaton is one
     *  the cases in {@link CompiledAutomaton.AUTOMATON_TYPE}. If simplify
     *  requires determinizing the automaton then only maxDeterminizedStates
     *  will be created.  Any more than that will cause a
     *  TooComplexToDeterminizeException.
     */
    public CompiledAutomaton(Automaton automaton, Boolean finite, boolean simplify, int maxDeterminizedStates,
            boolean isBinary) {
        if (automaton.getNumStates() == 0) {
            automaton = new Automaton();
            automaton.createState();
        }

        if (simplify) {

            // Test whether the automaton is a "simple" form and
            // if so, don't create a runAutomaton.  Note that on a
            // large automaton these tests could be costly:

            if (Operations.isEmpty(automaton)) {
                // matches nothing
                type = AUTOMATON_TYPE.NONE;
                term = null;
                commonSuffixRef = null;
                runAutomaton = null;
                this.automaton = null;
                this.finite = null;
                sinkState = -1;
                return;
            }

            boolean isTotal;

            // NOTE: only approximate, because automaton may not be minimal:
            if (isBinary) {
                isTotal = Operations.isTotal(automaton, 0, 0xff);
            } else {
                isTotal = Operations.isTotal(automaton);
            }

            if (isTotal) {
                // matches all possible strings
                type = AUTOMATON_TYPE.ALL;
                term = null;
                commonSuffixRef = null;
                runAutomaton = null;
                this.automaton = null;
                this.finite = null;
                sinkState = -1;
                return;
            }

            automaton = Operations.determinize(automaton, maxDeterminizedStates);

            IntsRef singleton = Operations.getSingleton(automaton);

            if (singleton != null) {
                // matches a fixed string
                type = AUTOMATON_TYPE.SINGLE;
                commonSuffixRef = null;
                runAutomaton = null;
                this.automaton = null;
                this.finite = null;

                if (isBinary) {
                    term = StringHelper.intsRefToBytesRef(singleton);
                } else {
                    term = new BytesRef(UnicodeUtil.newString(singleton.ints, singleton.offset, singleton.length));
                }
                sinkState = -1;
                return;
            }
        }

        type = AUTOMATON_TYPE.NORMAL;
        term = null;

        if (finite == null) {
            this.finite = Operations.isFinite(automaton);
        } else {
            this.finite = finite;
        }

        Automaton binary;
        if (isBinary) {
            // Caller already built binary automaton themselves, e.g. PrefixQuery
            // does this since it can be provided with a binary (not necessarily
            // UTF8!) term:
            binary = automaton;
        } else {
            // Incoming automaton is unicode, and we must convert to UTF8 to match what's in the index:
            binary = new UTF32ToUTF8().convert(automaton);
        }

        if (this.finite) {
            commonSuffixRef = null;
        } else {
            // NOTE: this is a very costly operation!  We should test if it's really warranted in practice... we could do a fast match
            // by looking for a sink state (which means it has no common suffix).  Or maybe we shouldn't do it when simplify is false?:
            BytesRef suffix = Operations.getCommonSuffixBytesRef(binary, maxDeterminizedStates);
            if (suffix.length == 0) {
                commonSuffixRef = null;
            } else {
                commonSuffixRef = suffix;
            }
        }

        // This will determinize the binary automaton for us:
        runAutomaton = new ByteRunAutomaton(binary, true, maxDeterminizedStates);

        this.automaton = runAutomaton.automaton;

        // TODO: this is a bit fragile because if the automaton is not minimized there could be more than 1 sink state but auto-prefix will fail
        // to run for those:
        sinkState = findSinkState(this.automaton);
    }

    private Transition transition = new Transition();

    //private static final boolean DEBUG = BlockTreeTermsWriter.DEBUG;

    private BytesRef addTail(int state, BytesRefBuilder term, int idx, int leadLabel) {
        //System.out.println("addTail state=" + state + " term=" + term.utf8ToString() + " idx=" + idx + " leadLabel=" + (char) leadLabel);
        //System.out.println(automaton.toDot());
        // Find biggest transition that's < label
        // TODO: use binary search here
        int maxIndex = -1;
        int numTransitions = automaton.initTransition(state, transition);
        for (int i = 0; i < numTransitions; i++) {
            automaton.getNextTransition(transition);
            if (transition.min < leadLabel) {
                maxIndex = i;
            } else {
                // Transitions are alway sorted
                break;
            }
        }

        //System.out.println("  maxIndex=" + maxIndex);

        assert maxIndex != -1;
        automaton.getTransition(state, maxIndex, transition);

        // Append floorLabel
        final int floorLabel;
        if (transition.max > leadLabel - 1) {
            floorLabel = leadLabel - 1;
        } else {
            floorLabel = transition.max;
        }
        //System.out.println("  floorLabel=" + (char) floorLabel);
        term.grow(1 + idx);
        //if (DEBUG) System.out.println("  add floorLabel=" + (char) floorLabel + " idx=" + idx);
        term.setByteAt(idx, (byte) floorLabel);

        state = transition.dest;
        //System.out.println("  dest: " + state);
        idx++;

        // Push down to last accept state
        while (true) {
            numTransitions = automaton.getNumTransitions(state);
            if (numTransitions == 0) {
                //System.out.println("state=" + state + " 0 trans");
                assert runAutomaton.isAccept(state);
                term.setLength(idx);
                //if (DEBUG) System.out.println("  return " + term.utf8ToString());
                return term.get();
            } else {
                // We are pushing "top" -- so get last label of
                // last transition:
                //System.out.println("get state=" + state + " numTrans=" + numTransitions);
                automaton.getTransition(state, numTransitions - 1, transition);
                term.grow(1 + idx);
                //if (DEBUG) System.out.println("  push maxLabel=" + (char) lastTransition.max + " idx=" + idx);
                //System.out.println("  add trans dest=" + scratch.dest + " label=" + (char) scratch.max);
                term.setByteAt(idx, (byte) transition.max);
                state = transition.dest;
                idx++;
            }
        }
    }

    // TODO: should this take startTerm too?  This way
    // Terms.intersect could forward to this method if type !=
    // NORMAL:
    /** Return a {@link TermsEnum} intersecting the provided {@link Terms}
     *  with the terms accepted by this automaton. */
    public TermsEnum getTermsEnum(Terms terms) throws IOException {
        switch (type) {
        case NONE:
            return TermsEnum.EMPTY;
        case ALL:
            return terms.iterator();
        case SINGLE:
            return new SingleTermsEnum(terms.iterator(), term);
        case NORMAL:
            return terms.intersect(this, null);
        default:
            // unreachable
            throw new RuntimeException("unhandled case");
        }
    }

    /** Finds largest term accepted by this Automaton, that's
     *  &lt;= the provided input term.  The result is placed in
     *  output; it's fine for output and input to point to
     *  the same bytes.  The returned result is either the
     *  provided output, or null if there is no floor term
     *  (ie, the provided input term is before the first term
     *  accepted by this Automaton). */
    public BytesRef floor(BytesRef input, BytesRefBuilder output) {

        //if (DEBUG) System.out.println("CA.floor input=" + input.utf8ToString());

        int state = 0;

        // Special case empty string:
        if (input.length == 0) {
            if (runAutomaton.isAccept(state)) {
                output.clear();
                return output.get();
            } else {
                return null;
            }
        }

        final List<Integer> stack = new ArrayList<>();

        int idx = 0;
        while (true) {
            int label = input.bytes[input.offset + idx] & 0xff;
            int nextState = runAutomaton.step(state, label);
            //if (DEBUG) System.out.println("  cycle label=" + (char) label + " nextState=" + nextState);

            if (idx == input.length - 1) {
                if (nextState != -1 && runAutomaton.isAccept(nextState)) {
                    // Input string is accepted
                    output.grow(1 + idx);
                    output.setByteAt(idx, (byte) label);
                    output.setLength(input.length);
                    //if (DEBUG) System.out.println("  input is accepted; return term=" + output.utf8ToString());
                    return output.get();
                } else {
                    nextState = -1;
                }
            }

            if (nextState == -1) {

                // Pop back to a state that has a transition
                // <= our label:
                while (true) {
                    int numTransitions = automaton.getNumTransitions(state);
                    if (numTransitions == 0) {
                        assert runAutomaton.isAccept(state);
                        output.setLength(idx);
                        //if (DEBUG) System.out.println("  return " + output.utf8ToString());
                        return output.get();
                    } else {
                        automaton.getTransition(state, 0, transition);

                        if (label - 1 < transition.min) {

                            if (runAutomaton.isAccept(state)) {
                                output.setLength(idx);
                                //if (DEBUG) System.out.println("  return " + output.utf8ToString());
                                return output.get();
                            }
                            // pop
                            if (stack.size() == 0) {
                                //if (DEBUG) System.out.println("  pop ord=" + idx + " return null");
                                return null;
                            } else {
                                state = stack.remove(stack.size() - 1);
                                idx--;
                                //if (DEBUG) System.out.println("  pop ord=" + (idx+1) + " label=" + (char) label + " first trans.min=" + (char) transitions[0].min);
                                label = input.bytes[input.offset + idx] & 0xff;
                            }
                        } else {
                            //if (DEBUG) System.out.println("  stop pop ord=" + idx + " first trans.min=" + (char) transitions[0].min);
                            break;
                        }
                    }
                }

                //if (DEBUG) System.out.println("  label=" + (char) label + " idx=" + idx);

                return addTail(state, output, idx, label);

            } else {
                output.grow(1 + idx);
                output.setByteAt(idx, (byte) label);
                stack.add(state);
                state = nextState;
                idx++;
            }
        }
    }

    @Override
    public int hashCode() {
        final int prime = 31;
        int result = 1;
        result = prime * result + ((runAutomaton == null) ? 0 : runAutomaton.hashCode());
        result = prime * result + ((term == null) ? 0 : term.hashCode());
        result = prime * result + ((type == null) ? 0 : type.hashCode());
        return result;
    }

    @Override
    public boolean equals(Object obj) {
        if (this == obj)
            return true;
        if (obj == null)
            return false;
        if (getClass() != obj.getClass())
            return false;
        CompiledAutomaton other = (CompiledAutomaton) obj;
        if (type != other.type)
            return false;
        if (type == AUTOMATON_TYPE.SINGLE) {
            if (!term.equals(other.term))
                return false;
        } else if (type == AUTOMATON_TYPE.NORMAL) {
            if (!runAutomaton.equals(other.runAutomaton))
                return false;
        }

        return true;
    }

    @Override
    public long ramBytesUsed() {
        return BASE_RAM_BYTES + RamUsageEstimator.sizeOfObject(automaton)
                + RamUsageEstimator.sizeOfObject(commonSuffixRef) + RamUsageEstimator.sizeOfObject(runAutomaton)
                + RamUsageEstimator.sizeOfObject(term) + RamUsageEstimator.sizeOfObject(transition);
    }

}