org.apache.mahout.df.mapred.partial.Step0JobTest.java Source code

Java tutorial

Introduction

Here is the source code for org.apache.mahout.df.mapred.partial.Step0JobTest.java

Source

/**
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.mahout.df.mapred.partial;

import java.io.IOException;
import java.util.Arrays;
import java.util.Random;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.InputSplit;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.RecordReader;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.mahout.common.MahoutTestCase;
import org.apache.mahout.common.RandomUtils;
import org.apache.mahout.df.data.DataConverter;
import org.apache.mahout.df.data.DataLoader;
import org.apache.mahout.df.data.Dataset;
import org.apache.mahout.df.data.Utils;
import org.apache.mahout.df.mapred.Builder;
import org.apache.mahout.df.mapred.partial.Step0Job.Step0Mapper;
import org.apache.mahout.df.mapred.partial.Step0Job.Step0Output;

public class Step0JobTest extends MahoutTestCase {

    // the generated data must be big enough to be splited by FileInputFormat

    private static final int numAttributes = 40;

    private static final int numInstances = 200;

    //int numTrees = 10;

    private static final int numMaps = 5;

    public void testStep0Mapper() throws Exception {
        Random rng = RandomUtils.getRandom();

        // create a dataset large enough to be split up
        String descriptor = Utils.randomDescriptor(rng, numAttributes);
        double[][] source = Utils.randomDoubles(rng, descriptor, numInstances);
        String[] sData = Utils.double2String(source);

        // write the data to a file
        Path dataPath = Utils.writeDataToTestFile(sData);

        JobConf job = new JobConf();
        job.setNumMapTasks(numMaps);

        FileInputFormat.setInputPaths(job, dataPath);

        // retrieve the splits
        TextInputFormat input = (TextInputFormat) job.getInputFormat();
        InputSplit[] splits = input.getSplits(job, numMaps);

        InputSplit[] sorted = Arrays.copyOf(splits, splits.length);
        Builder.sortSplits(sorted);

        Step0OutputCollector collector = new Step0OutputCollector(numMaps);
        Reporter reporter = Reporter.NULL;

        for (int p = 0; p < numMaps; p++) {
            InputSplit split = sorted[p];
            RecordReader<LongWritable, Text> reader = input.getRecordReader(split, job, reporter);

            LongWritable key = reader.createKey();
            Text value = reader.createValue();

            Step0Mapper mapper = new Step0Mapper();
            mapper.configure(p);

            Long firstKey = null;
            int size = 0;

            while (reader.next(key, value)) {
                if (firstKey == null) {
                    firstKey = key.get();
                }

                mapper.map(key, value, collector, reporter);

                size++;
            }

            mapper.close();

            // validate the mapper's output
            assertEquals(p, collector.keys[p]);
            assertEquals(firstKey.longValue(), collector.values[p].getFirstId());
            assertEquals(size, collector.values[p].getSize());
        }

    }

    public void testProcessOutput() throws Exception {
        Random rng = RandomUtils.getRandom();

        // create a dataset large enough to be split up
        String descriptor = Utils.randomDescriptor(rng, numAttributes);
        double[][] source = Utils.randomDoubles(rng, descriptor, numInstances);

        // each instance label is its index in the dataset
        int labelId = Utils.findLabel(descriptor);
        for (int index = 0; index < numInstances; index++) {
            source[index][labelId] = index;
        }

        String[] sData = Utils.double2String(source);

        // write the data to a file
        Path dataPath = Utils.writeDataToTestFile(sData);

        // prepare a data converter
        Dataset dataset = DataLoader.generateDataset(descriptor, sData);
        DataConverter converter = new DataConverter(dataset);

        JobConf job = new JobConf();
        job.setNumMapTasks(numMaps);
        FileInputFormat.setInputPaths(job, dataPath);

        // retrieve the splits
        TextInputFormat input = (TextInputFormat) job.getInputFormat();
        InputSplit[] splits = input.getSplits(job, numMaps);

        InputSplit[] sorted = Arrays.copyOf(splits, splits.length);
        Builder.sortSplits(sorted);

        Reporter reporter = Reporter.NULL;

        int[] keys = new int[numMaps];
        Step0Output[] values = new Step0Output[numMaps];

        int[] expectedIds = new int[numMaps];

        for (int p = 0; p < numMaps; p++) {
            InputSplit split = sorted[p];
            RecordReader<LongWritable, Text> reader = input.getRecordReader(split, job, reporter);

            LongWritable key = reader.createKey();
            Text value = reader.createValue();

            Long firstKey = null;
            int size = 0;

            while (reader.next(key, value)) {
                if (firstKey == null) {
                    firstKey = key.get();
                    expectedIds[p] = converter.convert(0, value.toString()).label;
                }

                size++;
            }

            keys[p] = p;
            values[p] = new Step0Output(firstKey, size);
        }

        Step0Output[] partitions = Step0Job.processOutput(keys, values);

        int[] actualIds = Step0Output.extractFirstIds(partitions);

        assertTrue("Expected: " + Arrays.toString(expectedIds) + " But was: " + Arrays.toString(actualIds),
                Arrays.equals(expectedIds, actualIds));
    }

    static class Step0OutputCollector implements OutputCollector<IntWritable, Step0Output> {

        private final int[] keys;

        private final Step0Output[] values;

        private int index = 0;

        Step0OutputCollector(int numMaps) {
            keys = new int[numMaps];
            values = new Step0Output[numMaps];
        }

        @Override
        public void collect(IntWritable key, Step0Output value) throws IOException {
            if (index == keys.length) {
                throw new IOException("Received more output than expected : " + index);
            }

            keys[index] = key.get();
            values[index] = value.clone();

            index++;
        }

        /**
         * Number of outputs collected
         * 
         * @return
         */
        public int nbOutputs() {
            return index;
        }

        public int[] getKeys() {
            return keys;
        }

        public Step0Output[] getValues() {
            return values;
        }
    }
}