org.apache.mahout.math.hadoop.MatrixMultiplicationJob.java Source code

Java tutorial

Introduction

Here is the source code for org.apache.mahout.math.hadoop.MatrixMultiplicationJob.java

Source

/**
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.mahout.math.hadoop;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.SequenceFileInputFormat;
import org.apache.hadoop.mapred.SequenceFileOutputFormat;
import org.apache.hadoop.mapred.join.CompositeInputFormat;
import org.apache.hadoop.mapred.join.TupleWritable;
import org.apache.hadoop.util.ToolRunner;
import org.apache.mahout.common.AbstractJob;
import org.apache.mahout.math.RandomAccessSparseVector;
import org.apache.mahout.math.SequentialAccessSparseVector;
import org.apache.mahout.math.Vector;
import org.apache.mahout.math.VectorWritable;
import org.apache.mahout.math.function.Functions;

import java.io.IOException;
import java.util.Iterator;
import java.util.List;
import java.util.Map;

/**
 * This still uses the old MR api and as with all things in Mahout that are MapReduce is now part of 'mrlegacy'.
 * There is no plan to convert the old MR api used here to the new MR api.
 * This will be replaced by the new Spark based Linear Algebra bindings.
 */

public class MatrixMultiplicationJob extends AbstractJob {

    private static final String OUT_CARD = "output.vector.cardinality";

    public static Configuration createMatrixMultiplyJobConf(Path aPath, Path bPath, Path outPath,
            int outCardinality) {
        return createMatrixMultiplyJobConf(new Configuration(), aPath, bPath, outPath, outCardinality);
    }

    public static Configuration createMatrixMultiplyJobConf(Configuration initialConf, Path aPath, Path bPath,
            Path outPath, int outCardinality) {
        JobConf conf = new JobConf(initialConf, MatrixMultiplicationJob.class);
        conf.setInputFormat(CompositeInputFormat.class);
        conf.set("mapred.join.expr",
                CompositeInputFormat.compose("inner", SequenceFileInputFormat.class, aPath, bPath));
        conf.setInt(OUT_CARD, outCardinality);
        conf.setOutputFormat(SequenceFileOutputFormat.class);
        FileOutputFormat.setOutputPath(conf, outPath);
        conf.setMapperClass(MatrixMultiplyMapper.class);
        conf.setCombinerClass(MatrixMultiplicationReducer.class);
        conf.setReducerClass(MatrixMultiplicationReducer.class);
        conf.setMapOutputKeyClass(IntWritable.class);
        conf.setMapOutputValueClass(VectorWritable.class);
        conf.setOutputKeyClass(IntWritable.class);
        conf.setOutputValueClass(VectorWritable.class);
        return conf;
    }

    public static void main(String[] args) throws Exception {
        ToolRunner.run(new MatrixMultiplicationJob(), args);
    }

    @Override
    public int run(String[] strings) throws Exception {
        addOption("numRowsA", "nra", "Number of rows of the first input matrix", true);
        addOption("numColsA", "nca", "Number of columns of the first input matrix", true);
        addOption("numRowsB", "nrb", "Number of rows of the second input matrix", true);

        addOption("numColsB", "ncb", "Number of columns of the second input matrix", true);
        addOption("inputPathA", "ia", "Path to the first input matrix", true);
        addOption("inputPathB", "ib", "Path to the second input matrix", true);

        addOption("outputPath", "op", "Path to the output matrix", false);

        Map<String, List<String>> argMap = parseArguments(strings);
        if (argMap == null) {
            return -1;
        }

        DistributedRowMatrix a = new DistributedRowMatrix(new Path(getOption("inputPathA")),
                new Path(getOption("tempDir")), Integer.parseInt(getOption("numRowsA")),
                Integer.parseInt(getOption("numColsA")));
        DistributedRowMatrix b = new DistributedRowMatrix(new Path(getOption("inputPathB")),
                new Path(getOption("tempDir")), Integer.parseInt(getOption("numRowsB")),
                Integer.parseInt(getOption("numColsB")));

        a.setConf(new Configuration(getConf()));
        b.setConf(new Configuration(getConf()));

        if (hasOption("outputPath")) {
            a.times(b, new Path(getOption("outputPath")));
        } else {
            a.times(b);
        }

        return 0;
    }

    public static class MatrixMultiplyMapper extends MapReduceBase
            implements Mapper<IntWritable, TupleWritable, IntWritable, VectorWritable> {

        private int outCardinality;
        private final IntWritable row = new IntWritable();

        @Override
        public void configure(JobConf conf) {
            outCardinality = conf.getInt(OUT_CARD, Integer.MAX_VALUE);
        }

        @Override
        public void map(IntWritable index, TupleWritable v, OutputCollector<IntWritable, VectorWritable> out,
                Reporter reporter) throws IOException {
            boolean firstIsOutFrag = ((VectorWritable) v.get(0)).get().size() == outCardinality;
            Vector outFrag = firstIsOutFrag ? ((VectorWritable) v.get(0)).get() : ((VectorWritable) v.get(1)).get();
            Vector multiplier = firstIsOutFrag ? ((VectorWritable) v.get(1)).get()
                    : ((VectorWritable) v.get(0)).get();

            VectorWritable outVector = new VectorWritable();
            for (Vector.Element e : multiplier.nonZeroes()) {
                row.set(e.index());
                outVector.set(outFrag.times(e.get()));
                out.collect(row, outVector);
            }
        }
    }

    public static class MatrixMultiplicationReducer extends MapReduceBase
            implements Reducer<IntWritable, VectorWritable, IntWritable, VectorWritable> {

        @Override
        public void reduce(IntWritable rowNum, Iterator<VectorWritable> it,
                OutputCollector<IntWritable, VectorWritable> out, Reporter reporter) throws IOException {
            if (!it.hasNext()) {
                return;
            }
            Vector accumulator = new RandomAccessSparseVector(it.next().get());
            while (it.hasNext()) {
                Vector row = it.next().get();
                accumulator.assign(row, Functions.PLUS);
            }
            out.collect(rowNum, new VectorWritable(new SequentialAccessSparseVector(accumulator)));
        }
    }

}