Java tutorial
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.predictionio.examples.java.recommendations.tutorial4; import org.apache.predictionio.controller.java.LJavaPreparator; import org.apache.predictionio.controller.java.EmptyParams; import java.util.Arrays; import java.util.Map; import java.util.HashMap; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.apache.commons.math3.linear.ArrayRealVector; import org.apache.commons.math3.linear.RealVector; public class Preparator extends LJavaPreparator<EmptyParams, TrainingData, PreparedData> { final static Logger logger = LoggerFactory.getLogger(Preparator.class); final int indexOffset = 5; public Preparator() { } public PreparedData prepare(TrainingData trainingData) { Map<Integer, RealVector> itemFeatures = new HashMap<Integer, RealVector>(); int featureSize = trainingData.genres.size(); for (Integer iid : trainingData.itemInfo.keySet()) { String[] info = trainingData.itemInfo.get(iid); RealVector features = new ArrayRealVector(featureSize); for (int i = 0; i < featureSize; i++) { features.setEntry(i, Double.parseDouble(info[i + indexOffset])); } itemFeatures.put(iid, features); } return new PreparedData(trainingData, itemFeatures, featureSize); } }