org.apache.solr.search.SortedIntDocSet.java Source code

Java tutorial

Introduction

Here is the source code for org.apache.solr.search.SortedIntDocSet.java

Source

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.solr.search;

import org.apache.lucene.index.AtomicReader;
import org.apache.lucene.util.Bits;
import org.apache.lucene.util.OpenBitSet;
import org.apache.lucene.search.BitsFilteredDocIdSet;
import org.apache.lucene.search.DocIdSet;
import org.apache.lucene.search.DocIdSetIterator;
import org.apache.lucene.search.Filter;
import org.apache.lucene.index.AtomicReaderContext;

/**
 * <code>SortedIntDocSet</code> represents a sorted set of Lucene Document Ids.
 */
public class SortedIntDocSet extends DocSetBase {
    protected final int[] docs;

    /**
     * @param docs  Sorted list of ids
     */
    public SortedIntDocSet(int[] docs) {
        this.docs = docs;
        // if (firstNonSorted(docs,0,docs.length)>=0) throw new RuntimeException("NON SORTED DOCS!!!");
    }

    /**
     * @param docs Sorted list of ids
     * @param len  Number of ids in the list
     */
    public SortedIntDocSet(int[] docs, int len) {
        this(shrink(docs, len));
    }

    public int[] getDocs() {
        return docs;
    }

    @Override
    public int size() {
        return docs.length;
    }

    @Override
    public long memSize() {
        return (docs.length << 2) + 8;
    }

    public static int[] zeroInts = new int[0];
    public static SortedIntDocSet zero = new SortedIntDocSet(zeroInts);

    public static int[] shrink(int[] arr, int newSize) {
        if (arr.length == newSize)
            return arr;
        int[] newArr = new int[newSize];
        System.arraycopy(arr, 0, newArr, 0, newSize);
        return newArr;
    }

    /** Returns the index of the first non-sorted element or -1 if they are all sorted */
    public static int firstNonSorted(int[] arr, int offset, int len) {
        if (len <= 1)
            return -1;
        int lower = arr[offset];
        int end = offset + len;
        for (int i = offset + 1; i < end; i++) {
            int next = arr[i];
            if (next <= lower) {
                for (int j = i - 1; j > offset; j--) {
                    if (arr[j] < next)
                        return j + 1;
                }
                return offset;
            }
            lower = next;
        }
        return -1;
    }

    public static int intersectionSize(int[] smallerSortedList, int[] biggerSortedList) {
        final int a[] = smallerSortedList;
        final int b[] = biggerSortedList;

        // The next doc we are looking for will be much closer to the last position we tried
        // than it will be to the midpoint between last and high... so probe ahead using
        // a function of the ratio of the sizes of the sets.
        int step = (b.length / a.length) + 1;

        // Since the majority of probes should be misses, we'll already be above the last probe
        // and shouldn't need to move larger than the step size on average to step over our target (and thus lower
        // the high upper bound a lot.)... but if we don't go over our target, it's a big miss... so double it.
        step = step + step;

        // FUTURE: come up with a density such that target * density == likely position?
        // then check step on one side or the other?
        // (density could be cached in the DocSet)... length/maxDoc

        // FUTURE: try partitioning like a sort algorithm.  Pick the midpoint of the big
        // array, find where that should be in the small array, and then recurse with
        // the top and bottom half of both arrays until they are small enough to use
        // a fallback insersection method.
        // NOTE: I tried this and it worked, but it was actually slower than this current
        // highly optimized approach.

        int icount = 0;
        int low = 0;
        int max = b.length - 1;

        for (int i = 0; i < a.length; i++) {
            int doca = a[i];

            int high = max;

            int probe = low + step; // 40% improvement!

            // short linear probe to see if we can drop the high pointer in one big jump.
            if (probe < high) {
                if (b[probe] >= doca) {
                    // success!  we cut down the upper bound by a lot in one step!
                    high = probe;
                } else {
                    // relative failure... we get to move the low pointer, but not my much
                    low = probe + 1;

                    // reprobe worth it? it appears so!
                    probe = low + step;
                    if (probe < high) {
                        if (b[probe] >= doca) {
                            high = probe;
                        } else {
                            low = probe + 1;
                        }
                    }
                }
            }

            // binary search the rest of the way
            while (low <= high) {
                int mid = (low + high) >>> 1;
                int docb = b[mid];

                if (docb < doca) {
                    low = mid + 1;
                } else if (docb > doca) {
                    high = mid - 1;
                } else {
                    icount++;
                    low = mid + 1; // found it, so start at next element
                    break;
                }
            }
            // Didn't find it... low is now positioned on the insertion point,
            // which is higher than what we were looking for, so continue using
            // the same low point.
        }

        return icount;
    }

    public static boolean intersects(int[] smallerSortedList, int[] biggerSortedList) {
        // see intersectionSize for more in-depth comments of this algorithm

        final int a[] = smallerSortedList;
        final int b[] = biggerSortedList;

        int step = (b.length / a.length) + 1;

        step = step + step;

        int low = 0;
        int max = b.length - 1;

        for (int i = 0; i < a.length; i++) {
            int doca = a[i];
            int high = max;
            int probe = low + step;
            if (probe < high) {
                if (b[probe] >= doca) {
                    high = probe;
                } else {
                    low = probe + 1;
                    probe = low + step;
                    if (probe < high) {
                        if (b[probe] >= doca) {
                            high = probe;
                        } else {
                            low = probe + 1;
                        }
                    }
                }
            }

            while (low <= high) {
                int mid = (low + high) >>> 1;
                int docb = b[mid];

                if (docb < doca) {
                    low = mid + 1;
                } else if (docb > doca) {
                    high = mid - 1;
                } else {
                    return true;
                }
            }
        }

        return false;
    }

    @Override
    public int intersectionSize(DocSet other) {
        if (!(other instanceof SortedIntDocSet)) {
            // assume other implementations are better at random access than we are,
            // true of BitDocSet and HashDocSet.
            int icount = 0;
            for (int i = 0; i < docs.length; i++) {
                if (other.exists(docs[i]))
                    icount++;
            }
            return icount;
        }

        // make "a" the smaller set.
        int[] otherDocs = ((SortedIntDocSet) other).docs;
        final int[] a = docs.length < otherDocs.length ? docs : otherDocs;
        final int[] b = docs.length < otherDocs.length ? otherDocs : docs;

        if (a.length == 0)
            return 0;

        // if b is 8 times bigger than a, use the modified binary search.
        if ((b.length >> 3) >= a.length) {
            return intersectionSize(a, b);
        }

        // if they are close in size, just do a linear walk of both.
        int icount = 0;
        int i = 0, j = 0;
        int doca = a[i], docb = b[j];
        for (;;) {
            // switch on the sign bit somehow?  Hopefull JVM is smart enough to just test once.

            // Since set a is less dense then set b, doca is likely to be greater than docb so
            // check that case first.  This resulted in a 13% speedup.
            if (doca > docb) {
                if (++j >= b.length)
                    break;
                docb = b[j];
            } else if (doca < docb) {
                if (++i >= a.length)
                    break;
                doca = a[i];
            } else {
                icount++;
                if (++i >= a.length)
                    break;
                doca = a[i];
                if (++j >= b.length)
                    break;
                docb = b[j];
            }
        }
        return icount;
    }

    @Override
    public boolean intersects(DocSet other) {
        if (!(other instanceof SortedIntDocSet)) {
            // assume other implementations are better at random access than we are,
            // true of BitDocSet and HashDocSet.
            for (int i = 0; i < docs.length; i++) {
                if (other.exists(docs[i]))
                    return true;
            }
            return false;
        }

        // make "a" the smaller set.
        int[] otherDocs = ((SortedIntDocSet) other).docs;
        final int[] a = docs.length < otherDocs.length ? docs : otherDocs;
        final int[] b = docs.length < otherDocs.length ? otherDocs : docs;

        if (a.length == 0)
            return false;

        // if b is 8 times bigger than a, use the modified binary search.
        if ((b.length >> 3) >= a.length) {
            return intersects(a, b);
        }

        // if they are close in size, just do a linear walk of both.
        int i = 0, j = 0;
        int doca = a[i], docb = b[j];
        for (;;) {
            // switch on the sign bit somehow?  Hopefull JVM is smart enough to just test once.

            // Since set a is less dense then set b, doca is likely to be greater than docb so
            // check that case first.  This resulted in a 13% speedup.
            if (doca > docb) {
                if (++j >= b.length)
                    break;
                docb = b[j];
            } else if (doca < docb) {
                if (++i >= a.length)
                    break;
                doca = a[i];
            } else {
                return true;
            }
        }
        return false;
    }

    /** puts the intersection of a and b into the target array and returns the size */
    public static int intersection(int a[], int lena, int b[], int lenb, int[] target) {
        if (lena > lenb) {
            int ti = lena;
            lena = lenb;
            lenb = ti;
            int[] ta = a;
            a = b;
            b = ta;
        }

        if (lena == 0)
            return 0;

        // if b is 8 times bigger than a, use the modified binary search.
        if ((lenb >> 3) >= lena) {
            return intersectionBinarySearch(a, lena, b, lenb, target);
        }

        int icount = 0;
        int i = 0, j = 0;
        int doca = a[i], docb = b[j];
        for (;;) {
            if (doca > docb) {
                if (++j >= lenb)
                    break;
                docb = b[j];
            } else if (doca < docb) {
                if (++i >= lena)
                    break;
                doca = a[i];
            } else {
                target[icount++] = doca;
                if (++i >= lena)
                    break;
                doca = a[i];
                if (++j >= lenb)
                    break;
                docb = b[j];
            }
        }
        return icount;
    }

    /** Puts the intersection of a and b into the target array and returns the size.
     * lena should be smaller than lenb */
    protected static int intersectionBinarySearch(int[] a, int lena, int[] b, int lenb, int[] target) {
        int step = (lenb / lena) + 1;
        step = step + step;

        int icount = 0;
        int low = 0;
        int max = lenb - 1;

        for (int i = 0; i < lena; i++) {
            int doca = a[i];

            int high = max;

            int probe = low + step; // 40% improvement!

            // short linear probe to see if we can drop the high pointer in one big jump.
            if (probe < high) {
                if (b[probe] >= doca) {
                    // success!  we cut down the upper bound by a lot in one step!
                    high = probe;
                } else {
                    // relative failure... we get to move the low pointer, but not my much
                    low = probe + 1;

                    // reprobe worth it? it appears so!
                    probe = low + step;
                    if (probe < high) {
                        if (b[probe] >= doca) {
                            high = probe;
                        } else {
                            low = probe + 1;
                        }
                    }
                }
            }

            // binary search
            while (low <= high) {
                int mid = (low + high) >>> 1;
                int docb = b[mid];

                if (docb < doca) {
                    low = mid + 1;
                } else if (docb > doca) {
                    high = mid - 1;
                } else {
                    target[icount++] = doca;
                    low = mid + 1; // found it, so start at next element
                    break;
                }
            }
            // Didn't find it... low is now positioned on the insertion point,
            // which is higher than what we were looking for, so continue using
            // the same low point.
        }

        return icount;
    }

    @Override
    public DocSet intersection(DocSet other) {
        if (!(other instanceof SortedIntDocSet)) {
            int icount = 0;
            int arr[] = new int[docs.length];
            for (int i = 0; i < docs.length; i++) {
                int doc = docs[i];
                if (other.exists(doc))
                    arr[icount++] = doc;
            }
            return new SortedIntDocSet(arr, icount);
        }

        int[] otherDocs = ((SortedIntDocSet) other).docs;
        int maxsz = Math.min(docs.length, otherDocs.length);
        int[] arr = new int[maxsz];
        int sz = intersection(docs, docs.length, otherDocs, otherDocs.length, arr);
        return new SortedIntDocSet(arr, sz);
    }

    protected static int andNotBinarySearch(int a[], int lena, int b[], int lenb, int[] target) {
        int step = (lenb / lena) + 1;
        step = step + step;

        int count = 0;
        int low = 0;
        int max = lenb - 1;

        outer: for (int i = 0; i < lena; i++) {
            int doca = a[i];

            int high = max;

            int probe = low + step; // 40% improvement!

            // short linear probe to see if we can drop the high pointer in one big jump.
            if (probe < high) {
                if (b[probe] >= doca) {
                    // success!  we cut down the upper bound by a lot in one step!
                    high = probe;
                } else {
                    // relative failure... we get to move the low pointer, but not my much
                    low = probe + 1;

                    // reprobe worth it? it appears so!
                    probe = low + step;
                    if (probe < high) {
                        if (b[probe] >= doca) {
                            high = probe;
                        } else {
                            low = probe + 1;
                        }
                    }
                }
            }

            // binary search
            while (low <= high) {
                int mid = (low + high) >>> 1;
                int docb = b[mid];

                if (docb < doca) {
                    low = mid + 1;
                } else if (docb > doca) {
                    high = mid - 1;
                } else {
                    low = mid + 1; // found it, so start at next element
                    continue outer;
                }
            }
            // Didn't find it... low is now positioned on the insertion point,
            // which is higher than what we were looking for, so continue using
            // the same low point.
            target[count++] = doca;
        }

        return count;
    }

    /** puts the intersection of a and not b into the target array and returns the size */
    public static int andNot(int a[], int lena, int b[], int lenb, int[] target) {
        if (lena == 0)
            return 0;
        if (lenb == 0) {
            System.arraycopy(a, 0, target, 0, lena);
            return lena;
        }

        // if b is 8 times bigger than a, use the modified binary search.
        if ((lenb >> 3) >= lena) {
            return andNotBinarySearch(a, lena, b, lenb, target);
        }

        int count = 0;
        int i = 0, j = 0;
        int doca = a[i], docb = b[j];
        for (;;) {
            if (doca > docb) {
                if (++j >= lenb)
                    break;
                docb = b[j];
            } else if (doca < docb) {
                target[count++] = doca;
                if (++i >= lena)
                    break;
                doca = a[i];
            } else {
                if (++i >= lena)
                    break;
                doca = a[i];
                if (++j >= lenb)
                    break;
                docb = b[j];
            }
        }

        int leftover = lena - i;

        if (leftover > 0) {
            System.arraycopy(a, i, target, count, leftover);
            count += leftover;
        }

        return count;
    }

    @Override
    public DocSet andNot(DocSet other) {
        if (other.size() == 0)
            return this;

        if (!(other instanceof SortedIntDocSet)) {
            int count = 0;
            int arr[] = new int[docs.length];
            for (int i = 0; i < docs.length; i++) {
                int doc = docs[i];
                if (!other.exists(doc))
                    arr[count++] = doc;
            }
            return new SortedIntDocSet(arr, count);
        }

        int[] otherDocs = ((SortedIntDocSet) other).docs;
        int[] arr = new int[docs.length];
        int sz = andNot(docs, docs.length, otherDocs, otherDocs.length, arr);
        return new SortedIntDocSet(arr, sz);
    }

    @Override
    public void setBitsOn(OpenBitSet target) {
        for (int doc : docs) {
            target.fastSet(doc);
        }
    }

    @Override
    public boolean exists(int doc) {
        // this could be faster by estimating where in the list the doc is likely to appear,
        // but we should get away from using exists() anyway.
        int low = 0;
        int high = docs.length - 1;
        // binary search
        while (low <= high) {
            int mid = (low + high) >>> 1;
            int docb = docs[mid];

            if (docb < doc) {
                low = mid + 1;
            } else if (docb > doc) {
                high = mid - 1;
            } else {
                return true;
            }
        }
        return false;
    }

    @Override
    public DocIterator iterator() {
        return new DocIterator() {
            int pos = 0;

            @Override
            public boolean hasNext() {
                return pos < docs.length;
            }

            @Override
            public Integer next() {
                return nextDoc();
            }

            /**
             * The remove  operation is not supported by this Iterator.
             */
            @Override
            public void remove() {
                throw new UnsupportedOperationException("The remove  operation is not supported by this Iterator.");
            }

            @Override
            public int nextDoc() {
                return docs[pos++];
            }

            @Override
            public float score() {
                return 0.0f;
            }
        };
    }

    @Override
    public OpenBitSet getBits() {
        int maxDoc = size() > 0 ? docs[size() - 1] : 0;
        OpenBitSet bs = new OpenBitSet(maxDoc + 1);
        for (int doc : docs) {
            bs.fastSet(doc);
        }
        return bs;
    }

    public static int findIndex(int[] arr, int value, int low, int high) {
        // binary search
        while (low <= high) {
            int mid = (low + high) >>> 1;
            int found = arr[mid];

            if (found < value) {
                low = mid + 1;
            } else if (found > value) {
                high = mid - 1;
            } else {
                return mid;
            }
        }
        return low;
    }

    @Override
    public Filter getTopFilter() {
        return new Filter() {
            int lastEndIdx = 0;

            @Override
            public DocIdSet getDocIdSet(final AtomicReaderContext context, final Bits acceptDocs) {
                AtomicReader reader = context.reader();
                // all Solr DocSets that are used as filters only include live docs
                final Bits acceptDocs2 = acceptDocs == null ? null
                        : (reader.getLiveDocs() == acceptDocs ? null : acceptDocs);

                final int base = context.docBase;
                final int maxDoc = reader.maxDoc();
                final int max = base + maxDoc; // one past the max doc in this segment.
                int sidx = Math.max(0, lastEndIdx);

                if (sidx > 0 && docs[sidx - 1] >= base) {
                    // oops, the lastEndIdx isn't correct... we must have been used
                    // in a multi-threaded context, or the indexreaders are being
                    // used out-of-order.  start at 0.
                    sidx = 0;
                }
                if (sidx < docs.length && docs[sidx] < base) {
                    // if docs[sidx] is < base, we need to seek to find the real start.
                    sidx = findIndex(docs, base, sidx, docs.length - 1);
                }

                final int startIdx = sidx;

                // Largest possible end index is limited to the start index
                // plus the number of docs contained in the segment.  Subtract 1 since
                // the end index is inclusive.
                int eidx = Math.min(docs.length, startIdx + maxDoc) - 1;

                // find the real end
                eidx = findIndex(docs, max, startIdx, eidx) - 1;

                final int endIdx = eidx;
                lastEndIdx = endIdx;

                return BitsFilteredDocIdSet.wrap(new DocIdSet() {
                    @Override
                    public DocIdSetIterator iterator() {
                        return new DocIdSetIterator() {
                            int idx = startIdx;
                            int adjustedDoc = -1;

                            @Override
                            public int docID() {
                                return adjustedDoc;
                            }

                            @Override
                            public int nextDoc() {
                                return adjustedDoc = (idx > endIdx) ? NO_MORE_DOCS : (docs[idx++] - base);
                            }

                            @Override
                            public int advance(int target) {
                                if (idx > endIdx || target == NO_MORE_DOCS)
                                    return adjustedDoc = NO_MORE_DOCS;
                                target += base;

                                // probe next
                                int rawDoc = docs[idx++];
                                if (rawDoc >= target)
                                    return adjustedDoc = rawDoc - base;

                                int high = endIdx;

                                // TODO: probe more before resorting to binary search?

                                // binary search
                                while (idx <= high) {
                                    int mid = (idx + high) >>> 1;
                                    rawDoc = docs[mid];

                                    if (rawDoc < target) {
                                        idx = mid + 1;
                                    } else if (rawDoc > target) {
                                        high = mid - 1;
                                    } else {
                                        idx = mid + 1;
                                        return adjustedDoc = rawDoc - base;
                                    }
                                }

                                // low is on the insertion point...
                                if (idx <= endIdx) {
                                    return adjustedDoc = docs[idx++] - base;
                                } else {
                                    return adjustedDoc = NO_MORE_DOCS;
                                }
                            }

                            @Override
                            public long cost() {
                                return docs.length;
                            }
                        };
                    }

                    @Override
                    public boolean isCacheable() {
                        return true;
                    }

                    @Override
                    public Bits bits() {
                        // random access is expensive for this set
                        return null;
                    }

                }, acceptDocs2);
            }
        };
    }

    @Override
    protected SortedIntDocSet clone() {
        return new SortedIntDocSet(docs.clone());
    }
}