Java tutorial
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.spark.ml.stat; import java.io.IOException; import java.util.Arrays; import java.util.List; import org.apache.commons.math3.distribution.NormalDistribution; import org.apache.spark.sql.Encoders; import org.junit.Test; import org.apache.spark.SharedSparkSession; import org.apache.spark.api.java.function.Function; import org.apache.spark.sql.Dataset; import org.apache.spark.sql.Row; public class JavaKolmogorovSmirnovTestSuite extends SharedSparkSession { private transient Dataset<Row> dataset; @Override public void setUp() throws IOException { super.setUp(); List<java.lang.Double> points = Arrays.asList(0.1, 1.1, 10.1, -1.1); dataset = spark.createDataset(points, Encoders.DOUBLE()).toDF("sample"); } @Test public void testKSTestCDF() { // Create theoretical distributions NormalDistribution stdNormalDist = new NormalDistribution(0, 1); // set seeds Long seed = 10L; stdNormalDist.reseedRandomGenerator(seed); Function<Double, Double> stdNormalCDF = (x) -> stdNormalDist.cumulativeProbability(x); double pThreshold = 0.05; // Comparing a standard normal sample to a standard normal distribution Row results = KolmogorovSmirnovTest.test(dataset, "sample", stdNormalCDF).head(); double pValue1 = results.getDouble(0); // Cannot reject null hypothesis assert (pValue1 > pThreshold); } @Test public void testKSTestNamedDistribution() { double pThreshold = 0.05; // Comparing a standard normal sample to a standard normal distribution Row results = KolmogorovSmirnovTest.test(dataset, "sample", "norm", 0.0, 1.0).head(); double pValue1 = results.getDouble(0); // Cannot reject null hypothesis assert (pValue1 > pThreshold); } }