org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.java Source code

Java tutorial

Introduction

Here is the source code for org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.java

Source

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.shuffle.sort;

import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import javax.annotation.Nullable;

import scala.None$;
import scala.Option;
import scala.Product2;
import scala.Tuple2;
import scala.collection.Iterator;

import com.google.common.annotations.VisibleForTesting;
import com.google.common.io.Closeables;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import org.apache.spark.Partitioner;
import org.apache.spark.ShuffleDependency;
import org.apache.spark.SparkConf;
import org.apache.spark.TaskContext;
import org.apache.spark.executor.ShuffleWriteMetrics;
import org.apache.spark.scheduler.MapStatus;
import org.apache.spark.scheduler.MapStatus$;
import org.apache.spark.serializer.Serializer;
import org.apache.spark.serializer.SerializerInstance;
import org.apache.spark.shuffle.IndexShuffleBlockResolver;
import org.apache.spark.shuffle.ShuffleWriter;
import org.apache.spark.storage.*;
import org.apache.spark.util.Utils;

/**
 * This class implements sort-based shuffle's hash-style shuffle fallback path. This write path
 * writes incoming records to separate files, one file per reduce partition, then concatenates these
 * per-partition files to form a single output file, regions of which are served to reducers.
 * Records are not buffered in memory. This is essentially identical to
 * {@link org.apache.spark.shuffle.hash.HashShuffleWriter}, except that it writes output in a format
 * that can be served / consumed via {@link org.apache.spark.shuffle.IndexShuffleBlockResolver}.
 * <p>
 * This write path is inefficient for shuffles with large numbers of reduce partitions because it
 * simultaneously opens separate serializers and file streams for all partitions. As a result,
 * {@link SortShuffleManager} only selects this write path when
 * <ul>
 *    <li>no Ordering is specified,</li>
 *    <li>no Aggregator is specific, and</li>
 *    <li>the number of partitions is less than
 *      <code>spark.shuffle.sort.bypassMergeThreshold</code>.</li>
 * </ul>
 *
 * This code used to be part of {@link org.apache.spark.util.collection.ExternalSorter} but was
 * refactored into its own class in order to reduce code complexity; see SPARK-7855 for details.
 * <p>
 * There have been proposals to completely remove this code path; see SPARK-6026 for details.
 */
final class BypassMergeSortShuffleWriter<K, V> extends ShuffleWriter<K, V> {

    private final Logger logger = LoggerFactory.getLogger(BypassMergeSortShuffleWriter.class);

    private final int fileBufferSize;
    private final boolean transferToEnabled;
    private final int numPartitions;
    private final BlockManager blockManager;
    private final Partitioner partitioner;
    private final ShuffleWriteMetrics writeMetrics;
    private final int shuffleId;
    private final int mapId;
    private final Serializer serializer;
    private final IndexShuffleBlockResolver shuffleBlockResolver;

    /** Array of file writers, one for each partition */
    private DiskBlockObjectWriter[] partitionWriters;
    @Nullable
    private MapStatus mapStatus;
    private long[] partitionLengths;

    /**
     * Are we in the process of stopping? Because map tasks can call stop() with success = true
     * and then call stop() with success = false if they get an exception, we want to make sure
     * we don't try deleting files, etc twice.
     */
    private boolean stopping = false;

    public BypassMergeSortShuffleWriter(BlockManager blockManager, IndexShuffleBlockResolver shuffleBlockResolver,
            BypassMergeSortShuffleHandle<K, V> handle, int mapId, TaskContext taskContext, SparkConf conf) {
        // Use getSizeAsKb (not bytes) to maintain backwards compatibility if no units are provided
        this.fileBufferSize = (int) conf.getSizeAsKb("spark.shuffle.file.buffer", "32k") * 1024;
        this.transferToEnabled = conf.getBoolean("spark.file.transferTo", true);
        this.blockManager = blockManager;
        final ShuffleDependency<K, V, V> dep = handle.dependency();
        this.mapId = mapId;
        this.shuffleId = dep.shuffleId();
        this.partitioner = dep.partitioner();
        this.numPartitions = partitioner.numPartitions();
        this.writeMetrics = new ShuffleWriteMetrics();
        taskContext.taskMetrics().shuffleWriteMetrics_$eq(Option.apply(writeMetrics));
        this.serializer = Serializer.getSerializer(dep.serializer());
        this.shuffleBlockResolver = shuffleBlockResolver;
    }

    @Override
    public void write(Iterator<Product2<K, V>> records) throws IOException {
        assert (partitionWriters == null);
        if (!records.hasNext()) {
            partitionLengths = new long[numPartitions];
            shuffleBlockResolver.writeIndexFileAndCommit(shuffleId, mapId, partitionLengths, null);
            mapStatus = MapStatus$.MODULE$.apply(blockManager.shuffleServerId(), partitionLengths);
            return;
        }
        final SerializerInstance serInstance = serializer.newInstance();
        final long openStartTime = System.nanoTime();
        partitionWriters = new DiskBlockObjectWriter[numPartitions];
        for (int i = 0; i < numPartitions; i++) {
            final Tuple2<TempShuffleBlockId, File> tempShuffleBlockIdPlusFile = blockManager.diskBlockManager()
                    .createTempShuffleBlock();
            final File file = tempShuffleBlockIdPlusFile._2();
            final BlockId blockId = tempShuffleBlockIdPlusFile._1();
            partitionWriters[i] = blockManager
                    .getDiskWriter(blockId, file, serInstance, fileBufferSize, writeMetrics).open();
        }
        // Creating the file to write to and creating a disk writer both involve interacting with
        // the disk, and can take a long time in aggregate when we open many files, so should be
        // included in the shuffle write time.
        writeMetrics.incShuffleWriteTime(System.nanoTime() - openStartTime);

        while (records.hasNext()) {
            final Product2<K, V> record = records.next();
            final K key = record._1();
            partitionWriters[partitioner.getPartition(key)].write(key, record._2());
        }

        for (DiskBlockObjectWriter writer : partitionWriters) {
            writer.commitAndClose();
        }

        File output = shuffleBlockResolver.getDataFile(shuffleId, mapId);
        File tmp = Utils.tempFileWith(output);
        partitionLengths = writePartitionedFile(tmp);
        shuffleBlockResolver.writeIndexFileAndCommit(shuffleId, mapId, partitionLengths, tmp);
        mapStatus = MapStatus$.MODULE$.apply(blockManager.shuffleServerId(), partitionLengths);
    }

    @VisibleForTesting
    long[] getPartitionLengths() {
        return partitionLengths;
    }

    /**
     * Concatenate all of the per-partition files into a single combined file.
     *
     * @return array of lengths, in bytes, of each partition of the file (used by map output tracker).
     */
    private long[] writePartitionedFile(File outputFile) throws IOException {
        // Track location of the partition starts in the output file
        final long[] lengths = new long[numPartitions];
        if (partitionWriters == null) {
            // We were passed an empty iterator
            return lengths;
        }

        final FileOutputStream out = new FileOutputStream(outputFile, true);
        final long writeStartTime = System.nanoTime();
        boolean threwException = true;
        try {
            for (int i = 0; i < numPartitions; i++) {
                final FileInputStream in = new FileInputStream(partitionWriters[i].fileSegment().file());
                boolean copyThrewException = true;
                try {
                    lengths[i] = Utils.copyStream(in, out, false, transferToEnabled);
                    copyThrewException = false;
                } finally {
                    Closeables.close(in, copyThrewException);
                }
                if (!partitionWriters[i].fileSegment().file().delete()) {
                    logger.error("Unable to delete file for partition {}", i);
                }
            }
            threwException = false;
        } finally {
            Closeables.close(out, threwException);
            writeMetrics.incShuffleWriteTime(System.nanoTime() - writeStartTime);
        }
        partitionWriters = null;
        return lengths;
    }

    @Override
    public Option<MapStatus> stop(boolean success) {
        if (stopping) {
            return None$.empty();
        } else {
            stopping = true;
            if (success) {
                if (mapStatus == null) {
                    throw new IllegalStateException("Cannot call stop(true) without having called write()");
                }
                return Option.apply(mapStatus);
            } else {
                // The map task failed, so delete our output data.
                if (partitionWriters != null) {
                    try {
                        for (DiskBlockObjectWriter writer : partitionWriters) {
                            // This method explicitly does _not_ throw exceptions:
                            File file = writer.revertPartialWritesAndClose();
                            if (!file.delete()) {
                                logger.error("Error while deleting file {}", file.getAbsolutePath());
                            }
                        }
                    } finally {
                        partitionWriters = null;
                    }
                }
                shuffleBlockResolver.removeDataByMap(shuffleId, mapId);
                return None$.empty();
            }
        }
    }
}