Java tutorial
/* * Copyright 2010 Internet Archive * * Licensed under the Apache License, Version 2.0 (the "License"); you * may not use this file except in compliance with the License. You * may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or * implied. See the License for the specific language governing * permissions and limitations under the License. */ package org.archive.jbs.misc; import java.io.IOException; import java.util.*; import org.apache.hadoop.conf.*; import org.apache.hadoop.fs.*; import org.apache.hadoop.io.*; import org.apache.hadoop.mapred.*; import org.apache.hadoop.util.*; import org.apache.hadoop.mapred.lib.MultipleInputs; import org.apache.nutch.parse.ParseData; import org.apache.nutch.parse.ParseText; import org.apache.nutch.metadata.Metadata; /** * <p> * MapReduce code to generate and count n-grams from the title and * content of records in a NutchWAX segment. It generates * {2,3,4,5}-grams. * </p> * <p> * The output is a text file of the form: * <code>ngram, count</code> * </p> * <p> * All the different ngram lengths are mixed together. * </p> * <p> * <strong>NOTE:</strong> This class is currently experimental and * is not used in production. If it's ultimately not useful, it will * likely be removed. * </p> */ public class NGrams extends Configured implements Tool { public static class Map extends MapReduceBase implements Mapper<Text, Writable, Text, LongWritable> { public void map(Text key, Writable value, OutputCollector<Text, LongWritable> output, Reporter reporter) throws IOException { String text = ""; if (value instanceof ParseData) { ParseData pd = (ParseData) value; text = pd.getTitle(); } else if (value instanceof ParseText) { text = value.toString(); } else { // Weird System.out.println("value type: " + value.getClass()); return; } int lengths[] = { 2, 3, 4, 5 }; Text tgram = new Text(); LongWritable one = new LongWritable(1); // Strip out anything that is not a letter. text = text.replaceAll("[^\\p{L}]", " "); String[] tokens = text.split("\\s+"); for (int n : lengths) { for (int i = 0; i <= (tokens.length - n); i++) { String gram = tokens[i]; for (int j = 1; j < n; j++) { gram += " " + tokens[i + j]; } tgram.set(gram); output.collect(tgram, one); } } } } public static class Reduce extends MapReduceBase implements Reducer<Text, LongWritable, Text, LongWritable> { public void reduce(Text key, Iterator<LongWritable> values, OutputCollector<Text, LongWritable> output, Reporter reporter) throws IOException { long sum = 0; while (values.hasNext()) { LongWritable value = values.next(); sum += value.get(); } output.collect(key, new LongWritable(sum)); } } public static void main(String[] args) throws Exception { int result = ToolRunner.run(new JobConf(NGrams.class), new NGrams(), args); System.exit(result); } public int run(String[] args) throws Exception { if (args.length < 2) { System.err.println("NGrams <output> <input>..."); return 1; } JobConf conf = new JobConf(getConf(), NGrams.class); conf.setJobName("NGrams"); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(LongWritable.class); conf.setMapperClass(Map.class); conf.setCombinerClass(Reduce.class); conf.setReducerClass(Reduce.class); // FIXME: Do we need this when using the MultipleInputs class below? // Looks like the answer is no. // conf.setInputFormat(SequenceFileInputFormat.class); conf.setOutputFormat(TextOutputFormat.class); // Assume the inputs are NutchWAX segments. for (int i = 1; i < args.length; i++) { Path p = new Path(args[i]); if (p.getFileSystem(conf).isFile(p)) { // FIXME: Emit an error message. } else { MultipleInputs.addInputPath(conf, new Path(p, "parse_data"), SequenceFileInputFormat.class, Map.class); MultipleInputs.addInputPath(conf, new Path(p, "parse_text"), SequenceFileInputFormat.class, Map.class); } } FileOutputFormat.setOutputPath(conf, new Path(args[0])); JobClient.runJob(conf); return 0; } }