Java tutorial
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.cloudata.util.matrix; import java.io.IOException; import java.util.Iterator; import org.apache.hadoop.io.Text; import org.apache.hadoop.io.Writable; import org.apache.hadoop.io.WritableComparable; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapred.OutputCollector; import org.apache.hadoop.mapred.Reducer; import org.apache.hadoop.mapred.Reporter; import org.cloudata.core.common.conf.CloudataConf; public class MatrixMutiplyReduce implements Reducer<WritableComparable, Writable, Text, Text> { IOException err; AbstractMatrix resultMatrix; Reporter reporter; public void reduce(WritableComparable key, Iterator<Writable> values, OutputCollector<Text, Text> colletcor, Reporter reporter) throws IOException { if (this.reporter == null) { this.reporter = reporter; } MatrixItem matrixItem = (MatrixItem) key; double sum = 0; while (values.hasNext()) { Text value = (Text) values.next(); sum += Double.parseDouble(value.toString()); } resultMatrix.addToUploader(matrixItem.row, matrixItem.column, sum); } public void configure(JobConf job) { CloudataConf conf = new CloudataConf(); boolean sparse = job.getBoolean(MatrixInputFormat.MATRIX_RESULT_SPARSE, false); String resultTableName = job.get(MatrixInputFormat.MATRIX_RESULT_TABLE); String resultColumnName = job.get(MatrixInputFormat.MATRIX_RESULT_COLUMN); try { if (sparse) { resultMatrix = new SparseMatrix(conf, resultTableName, resultColumnName); } else { resultMatrix = new Matrix(conf, resultTableName, resultColumnName); } resultMatrix.initUploader(); } catch (IOException e) { err = e; } } public void close() throws IOException { resultMatrix.closeUploader(); } }