Java tutorial
/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ package org.deeplearning4j.nn.conf.layers; import lombok.*; import org.deeplearning4j.nn.conf.inputs.InputType; import org.deeplearning4j.nn.conf.memory.LayerMemoryReport; import org.deeplearning4j.nn.conf.memory.MemoryReport; import org.nd4j.linalg.lossfunctions.ILossFunction; import org.nd4j.linalg.lossfunctions.LossFunctions.LossFunction; import org.nd4j.linalg.lossfunctions.impl.LossBinaryXENT; import org.nd4j.linalg.lossfunctions.impl.LossMCXENT; import org.nd4j.linalg.lossfunctions.impl.LossMSE; import org.nd4j.linalg.lossfunctions.impl.LossNegativeLogLikelihood; @Data @NoArgsConstructor @ToString(callSuper = true) @EqualsAndHashCode(callSuper = true) public abstract class BaseOutputLayer extends FeedForwardLayer { protected ILossFunction lossFn; protected boolean hasBias = true; protected BaseOutputLayer(Builder builder) { super(builder); this.lossFn = builder.lossFn; this.hasBias = builder.hasBias; } public boolean hasBias() { return hasBias; } @Override public LayerMemoryReport getMemoryReport(InputType inputType) { //Basically a dense layer... InputType outputType = getOutputType(-1, inputType); val numParams = initializer().numParams(this); val updaterStateSize = (int) getIUpdater().stateSize(numParams); int trainSizeFixed = 0; int trainSizeVariable = 0; if (getIDropout() != null) { if (false) { //TODO drop connect //Dup the weights... note that this does NOT depend on the minibatch size... trainSizeVariable += 0; //TODO } else { //Assume we dup the input trainSizeVariable += inputType.arrayElementsPerExample(); } } //Also, during backprop: we do a preOut call -> gives us activations size equal to the output size // which is modified in-place by activation function backprop // then we have 'epsilonNext' which is equivalent to input size trainSizeVariable += outputType.arrayElementsPerExample(); return new LayerMemoryReport.Builder(layerName, OutputLayer.class, inputType, outputType) .standardMemory(numParams, updaterStateSize).workingMemory(0, 0, trainSizeFixed, trainSizeVariable) //No additional memory (beyond activations) for inference .cacheMemory(MemoryReport.CACHE_MODE_ALL_ZEROS, MemoryReport.CACHE_MODE_ALL_ZEROS) //No caching .build(); } @Getter @Setter public static abstract class Builder<T extends Builder<T>> extends FeedForwardLayer.Builder<T> { /** * Loss function for the output layer */ protected ILossFunction lossFn = new LossMCXENT(); /** * If true (default): include bias parameters in the model. False: no bias. * */ private boolean hasBias = true; public Builder() { } /** * @param lossFunction Loss function for the output layer */ public Builder(LossFunction lossFunction) { lossFunction(lossFunction); } /** * @param lossFunction Loss function for the output layer */ public Builder(ILossFunction lossFunction) { this.setLossFn(lossFunction); } /** * @param lossFunction Loss function for the output layer */ public T lossFunction(LossFunction lossFunction) { return lossFunction(lossFunction.getILossFunction()); } /** * If true (default): include bias parameters in the model. False: no bias. * * @param hasBias If true: include bias parameters in this model */ public T hasBias(boolean hasBias) { this.setHasBias(hasBias); return (T) this; } /** * @param lossFunction Loss function for the output layer */ public T lossFunction(ILossFunction lossFunction) { this.setLossFn(lossFunction); return (T) this; } } }