Java tutorial
/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ package org.deeplearning4j.nn.conf.layers; import lombok.*; import org.deeplearning4j.nn.api.Layer; import org.deeplearning4j.nn.api.ParamInitializer; import org.deeplearning4j.nn.conf.NeuralNetConfiguration; import org.deeplearning4j.nn.conf.inputs.InputType; import org.deeplearning4j.nn.conf.memory.LayerMemoryReport; import org.deeplearning4j.nn.conf.memory.MemoryReport; import org.deeplearning4j.nn.params.DefaultParamInitializer; import org.deeplearning4j.optimize.api.TrainingListener; import org.nd4j.linalg.api.buffer.DataType; import org.nd4j.linalg.api.ndarray.INDArray; import java.util.Collection; import java.util.Map; /** * Dense layer: a standard fully connected feed forward layer */ @Data @NoArgsConstructor @ToString(callSuper = true) @EqualsAndHashCode(callSuper = true) public class DenseLayer extends FeedForwardLayer { private boolean hasLayerNorm = false; private boolean hasBias = true; private DenseLayer(Builder builder) { super(builder); this.hasBias = builder.hasBias; this.hasLayerNorm = builder.hasLayerNorm; initializeConstraints(builder); } @Override public Layer instantiate(NeuralNetConfiguration conf, Collection<TrainingListener> trainingListeners, int layerIndex, INDArray layerParamsView, boolean initializeParams, DataType networkDataType) { LayerValidation.assertNInNOutSet("DenseLayer", getLayerName(), layerIndex, getNIn(), getNOut()); org.deeplearning4j.nn.layers.feedforward.dense.DenseLayer ret = new org.deeplearning4j.nn.layers.feedforward.dense.DenseLayer( conf, networkDataType); ret.setListeners(trainingListeners); ret.setIndex(layerIndex); ret.setParamsViewArray(layerParamsView); Map<String, INDArray> paramTable = initializer().init(conf, layerParamsView, initializeParams); ret.setParamTable(paramTable); ret.setConf(conf); return ret; } @Override public ParamInitializer initializer() { return DefaultParamInitializer.getInstance(); } @Override public LayerMemoryReport getMemoryReport(InputType inputType) { InputType outputType = getOutputType(-1, inputType); val numParams = initializer().numParams(this); val updaterStateSize = (int) getIUpdater().stateSize(numParams); int trainSizeFixed = 0; int trainSizeVariable = 0; if (getIDropout() != null) { if (false) { //TODO drop connect //Dup the weights... note that this does NOT depend on the minibatch size... trainSizeVariable += 0; //TODO } else { //Assume we dup the input trainSizeVariable += inputType.arrayElementsPerExample(); } } //Also, during backprop: we do a preOut call -> gives us activations size equal to the output size // which is modified in-place by activation function backprop // then we have 'epsilonNext' which is equivalent to input size trainSizeVariable += outputType.arrayElementsPerExample(); return new LayerMemoryReport.Builder(layerName, DenseLayer.class, inputType, outputType) .standardMemory(numParams, updaterStateSize).workingMemory(0, 0, trainSizeFixed, trainSizeVariable) //No additional memory (beyond activations) for inference .cacheMemory(MemoryReport.CACHE_MODE_ALL_ZEROS, MemoryReport.CACHE_MODE_ALL_ZEROS) //No caching in DenseLayer .build(); } public boolean hasBias() { return hasBias; } public boolean hasLayerNorm() { return hasLayerNorm; } @NoArgsConstructor @Getter @Setter public static class Builder extends FeedForwardLayer.Builder<Builder> { /** * If true (default): include bias parameters in the model. False: no bias. * */ private boolean hasBias = true; /** * If true (default): include bias parameters in the model. False: no bias. * * @param hasBias If true: include bias parameters in this model */ public Builder hasBias(boolean hasBias) { this.setHasBias(hasBias); return this; } /** * If true (default = false): enable layer normalization on this layer * */ private boolean hasLayerNorm = false; public Builder hasLayerNorm(boolean hasLayerNorm) { this.hasLayerNorm = hasLayerNorm; return this; } @Override @SuppressWarnings("unchecked") public DenseLayer build() { return new DenseLayer(this); } } }