Java tutorial
/* * Copyright (c) 2015 Villu Ruusmann * * This file is part of JPMML-Evaluator * * JPMML-Evaluator is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * JPMML-Evaluator is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with JPMML-Evaluator. If not, see <http://www.gnu.org/licenses/>. */ package org.jpmml.evaluator; import org.apache.commons.math3.distribution.NormalDistribution; import org.dmg.pmml.ContinuousDistribution; import org.dmg.pmml.DataType; import org.dmg.pmml.GaussianDistribution; import org.dmg.pmml.PoissonDistribution; public class DistributionUtil { private DistributionUtil() { } /** * <p> * Calculates the value of the specified probability function at the specified point. * </p> */ static public double probability(ContinuousDistribution distribution, Number x) { if (distribution instanceof GaussianDistribution) { return probability((GaussianDistribution) distribution, x); } else if (distribution instanceof PoissonDistribution) { return probability((PoissonDistribution) distribution, x); } throw new UnsupportedFeatureException(distribution); } static public double probability(GaussianDistribution gaussianDistribution, Number x) { NormalDistribution distribution = new NormalDistribution(gaussianDistribution.getMean(), Math.sqrt(gaussianDistribution.getVariance())); return distribution.density(x.doubleValue()); } static public double probability(PoissonDistribution poissonDistribution, Number x) { org.apache.commons.math3.distribution.PoissonDistribution distribution = new org.apache.commons.math3.distribution.PoissonDistribution( null, poissonDistribution.getMean(), org.apache.commons.math3.distribution.PoissonDistribution.DEFAULT_EPSILON, org.apache.commons.math3.distribution.PoissonDistribution.DEFAULT_MAX_ITERATIONS); x = (Number) TypeUtil.cast(DataType.INTEGER, x); return distribution.probability(x.intValue()); } static public boolean isNoOp(ContinuousDistribution distribution) { if (distribution instanceof GaussianDistribution) { return isNoOp((GaussianDistribution) distribution); } return true; } static public boolean isNoOp(GaussianDistribution gaussianDistribution) { return (gaussianDistribution.getVariance() <= 0d); } }